Расчет времени эвакуации. Время эвакуации при пожаре Определение времени эвакуации людей при пожаре

Особенности движения людей при эвакуации. Параметры движения людских потоков.

Передвижение людей происходит во всех помещениях зданий и сооружений, связанных с пребыванием в них человека. Для обеспечения передвижения людей в зданиях предусматривается коммуникационные помещения и другие специальные устройства: проходы между оборудованием, входы и выходы, коридоры, холлы, лестницы, вестибюли, фойе и т.д. Коммуникационные помещения в зданиях занимают значительную площадь, составляющую в ряде случаев 30 % и более от рабочей площади здания. Для большой группы зданий и помещений движение людей является основным функциональным процессом и от его правильной организации зависят рациональные объемно-планировочные решения здания.

Особое значение приобретает движение людей во время возникновения пожара в здании, аварии или какого-либо стихийного бедствия.

В этом случае от правильной организации движения и состояния коммуникационных помещений зависит жизнь людей. Поскольку возникновение пожара возможно в любом помещении, то учет аварийной эвакуации людей обязателен для любого помещения и здания или сооружения в целом.

Эвакуация представляет собой процесс организованного самостоятельного движения людей наружу из помещений, в которых имеется возможность воздействия на них ОФП.

Движение людей при эвакуации можно разделить на этапы:

1 - движение в пределах помещения до выхода непосредственно наружу, в коридор или в лестничную клетку;

2 - движение по коридору до выхода наружу непосредственно или в лестничную клетку;

3 - движение в лестничной клетке до выхода наружу или через вестибюль;

4 - движение от выходов наружу до рассеивания на прилегающей к зданию территории. В зависимости от этажности и классов функциональной пожарной опасности зданий количество этапов может видоизменяться.

При пожаре возникает реальная угроза жизни и здоровью людей. Поэтому процесс эвакуации начинается практически одновременно и имеет четкую направленность. Например, в зале зрелищного предприятия все зрители одновременно встают со своих мест и идут к выходу. В результате такого одновременного и направленного движения и вследствие ограниченной пропускной способности эвакуационных путей и выходов создаются большие плотности людских потоков, наблюдаются физические усилия со стороны отдельных эвакуирующихся, что значительно уменьшает скорость движения. Возникает противоречие: чем быстрее люди стремятся покинуть помещение здания, тем больше времени они вынуждены потратить на это. Особенностями движения при эвакуации являются также неблагоприятные воздействия ОФП и возможность возникновения паники. Панические реакции проявляются в основном либо в форме ступора (замирание, обездвиженности, неспособности к действию), либо фуги (бега, хаотических метаний, поверхностной ориентировки в обстановке).

Исследования показали, что основная масса эвакуирующихся (до 90 %) способна к здравой оценке ситуации и разумным действиям, но, испытывая страх и заражая им друг друга, может податься панике. Кроме того, в массе людей, оказывается от 10 до 20 % людей с выраженными расстройствами психики, которые являются потенциальными паникерами и могут отрицательно влиять на основную массу людей. Склонность к паническим действиям зависит от организованности группы людей, определяемой культурным уровнем общественным положением входящих в нее участников. Наиболее организованными являются группы, состоящие из служащих рабочих и учащихся, а неорганизованными оказываются группы лиц, не связанных между собой общими интересами. Нельзя учитывать, что по статистическим данным в общей массе людей около 3 % имеют физические недостатки (калеки), 9% людей находятся в преклонном возрасте, 4% - дети моложе 5 лет, кроме того, примерно 10% людей вследствие систематического применения лекарственных средств имеют замедленную реакцию, недостаточную двигательную способность и легко подверженную шоку. Указанные 26% людей не могут двигаться со скоростью основной массы эвакуирующихся, это приводит к задержкам в движении, падениям и даже может вызвать полную остановку движения, что способствует возникновению паники.

Паника может быть предотвращена соответствующими конструктивными и объемно-планировочными решениями путей эвакуации, мерами психологического воздействия, а также заранее продуманными действиями администрации. Для уменьшения паники необходимо исключать препятствия на путях эвакуации, обеспечить аварийное освещение, поддерживать контакт с эвакуируемыми. Организованному движению людей способствует система оповещения, указывающих порядок эвакуации и пути эвакуации.

Параметры движения людских потоков

Двигающиеся в одном направлении люди образуют людской поток, характеризующийся плотностью потока D , скоростью движения v , интенсивностью движения q и пропускной способность участка пути Q .

Плотность людского потока составляет количество человек N , размещающихся на единице площади эвакуационного пути F :

Чел/м 2 (2)

При расчетах используется безразмерная характеристика плотности людского потока, которую вычисляют по формуле:

, (3)

где и l – соответственно ширина и длина участка эвакуационного пути, м;

N – число людей на участке эвакуационного пути, чел;

f – средняя площадь горизонтальной проекции человека принимается равной, м 2:

взрослого в домашней одежде 0,1

взрослого в зимней одежде 0,125

подростка 0,07

Скорость движения людей в потоке зависит от вида пути и плотности людского потока и принимается по табл. П2.1 Методики (приказ МЧС России от 30.07.2009г., №382) или по табл.2 ГОСТ 12.1.004-91* «Пожарная безопасность. Общие требования».

Плотность потока D, м 2 /м 2

Горизонтальный путь

Дверной проем, интенсивность q, м/мин

Лестница вниз

Лестница вверх

Скорость V, v/мин

Интенсивность q, м/мин

Скорость V, м/мин

Интенсивность q, м/мин

Скорость V, м/мин

Интенсивность q, м/мин

0,90 и более

Примечание - интенсивность движения в дверном проеме при плотности потока 0,9 и более равная 8,5 м/мин, установлена для дверного проема шириной 1,6 м и более, а при дверном проеме меньшей ширины интенсивность движения следует определять по формуле q = 2,5 + 3,75δ.

Интенсивность движения людского потока характеризует количество людей, проходящих через 1м ширины эвакуационного пути за 1 минуту. В связи с тем, что количество людей выражается в м 2 , размерность интенсивности [q ] =м 2 /м мин = м/мин.

Интенсивность движения также зависит от плотности людского потока и вида пути. По мере увеличения плотности людского потока интенсивность движения вначале увеличивается и после достижения максимума q max , уменьшается.

При достижении q max параметры движения v и q
принимаются при условиях предельной плотности людского потока, т.е. при
. Значенияq max равны:

для горизонтальных путей 16,5 м/мин;

для дверных проемов 19,6 м/мин;

для лестниц при движении вниз 16,0 м/мин;

для лестниц при движении вверх 11,0 м/мин.

Пропускная способность участка пути характеризует количество людей, которое он способен пропустить в единицу времени и определяется как произведение интенсивности движения на ширину участка:

, м 2 /мин (4)

Используя понятие пропускной способности участка пути, можно получить формулы для расчета интенсивности движения и времени задержки при слиянии людских потоков.

Если происходит слияние нескольких людских потоков, то при беспрепятственном движении должно соблюдаться условие:

, (5)

откуда
. (6)

Задержка движения людей в начале i -го участка наблюдается при:

.

Время задержки определяется как разность времени эвакуации с учетом пропускной способности участков пути:

.

Время эвакуации людей по i -му участку при количестве людей N i и предельной пропускной способности участка пути Q пр определяется по формуле:

,

где q пр – интенсивность движения людей при предельной плотности (
), м/мин.

Аналогично
,

Следовательно
. (7)

Методика определения расчетного (фактического) времени эвакуации людей из помещений и зданий, разработанная МИСИ им. В.В. Куйбышева, первоначально изложена в ГОСТ 12.004-91*, затем утверждена в настоящее время приказом МЧС России от 30.07.2009г., №382.

Расчетное время эвакуации людей из помещений не определяют в тех случаях, когда нормами проектирования предусматривается один эвакуационный выход или когда на один эвакуационный выход приходится не более 50 человек, а расстояние от наиболее удаленного рабочего места до ближайшего эвакуационного выхода не превышает 25 м.

Плотности людских потоков в проходах, коридоров, кулуарах, фойе и на других путях эвакуации залов зрелищных предприятий, а также залов производственного назначения определяют с учетом того, что эвакуируемые люди одновременно выходят в общие проходы и коридоры. При этом плотность одинарных потоков (между креслами в зрительных залах, оборудованием в цехах) принимается такой же, как и в общих проходах. Под понятием общий проход подразумевается такой проход, который заканчивается эвакуационным выходом. Числом людей, которые успевают покинуть общий проход за время его заполнения, пренебрегают.

Плотность людских потоков в лестничных клетках определяют делением общего числа людей, эвакуирующихся по данной лестнице (за исключением людей, эвакуирующихся с первого этажа) на общую площадь лестницы в пределах отметок пола второго и верхнего этажей. Числом людей, которые успевают покинуть лестничную клетку за время ее заполнения, пренебрегают.

Скорость движения людей на различных участках пути принимается в зависимости от плотности людских потоков. В тех случаях, когда плотность потоков превышает 0,5 м 2 /м 2 , скорость движения людей определяют по предельной плотности D =0,9 и более.

Расчетное время эвакуации людей из помещений и зданий устанавливается по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длинной l i и шириной  i . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п. В пределах расчетного участка пути не должна изменяться ширина пути и не должно быть слияния людских потоков.

Длина и ширина каждого участка пути эвакуации принимаются по проекту. Длина пути по лестничным маршам, а также по пандусам измеряется по длине марша. Длина пути по лестнице определяется как суммарная длина ее маршей и площадок и может быть принята равной утроенной разности отметок между входом на лестницу и выходом из нее. Длина пути в дверном проеме принимается равной нулю. Проем, расположенный в стене толщиной более 0,7м, а также тамбур следует считать самостоятельным участком горизонтального пути, имеющим конечную длину l i .

Расчетное время эвакуации определяется как сумма времени движения людского потока по отдельным участкам пути ( i ) по формуле:

где - 1 , 2 i - время движения людей на первом (начальном) участке и каждом из следующих участков пути, мин.

Время движения людского потока по первому участку пути ( 1 ), мин., вычисляют по формуле:

, (9)

где l 1 – длина первого участка пути, м;

v 1 – значение скорости движения людского потока по горизонтальному пути на первом участке, определяется по табл. П2 (приказ МЧС России от 30.07.2009г., №382) в зависимости от плотности D , м/мин.

Плотность людского потока (D 1 )на первом участке пути, м 2 /м 2 , вычисляют по формуле:

, (10)

где N 1 – число людей на первом участке, чел.;

f – средняя площадь горизонтальной проекции человека, м 2 ;

1 – ширина первого участка пути, м.

На последующих участках скорость определяется по табл. П2 приказа в зависимости от значения интенсивности движения людского потока по каждому из этих участков пути, в том числе и для дверных проемов, по формуле:

, (11)

где i , i -1 – ширина рассматриваемого i -го и предшествующего ему участка пути, м;

q i , q i -1 – значения интенсивности движения людского потока по рассматриваемому i -му и предшествующему участкам пути, м/мин.

Если значение q i , определенное по формуле (11), меньше или равно значению q max , то время движения по участку пути ( i ) в минуту:

, (12)

при этом значения q max следует принимать равными, м/мин:

для горизонтальных путей – 16,5

для дверных проемов – 19,6

для лестницы вниз – 16

для лестницы вверх – 11

Если значение q i , определенное по формуле (12), больше q max то ширину i данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:

. (13)

При невозможности выполнения условия (2.13) по экономическим или техническим соображениям интенсивность и скорость движения людского потока по участку пути i определяют по табл. П2 приказа при значении D=0,9 и более. При этом должно учитываться время задержки движения людей из-за образовавшегося скопления перед границей i -го участка.

При слиянии в начале участка i двух и более людских потоков интенсивность движения q i вычисляют по формуле:

, (14)

где q i -1 – интенсивность движения людских потоков, сливающихся в начале участка i , м/мин;

i -1 – ширина участков пути слияния, м;

i – ширина рассматриваемого участка пути, м.

Если значение q i , определенное по формуле (14), больше q max , то ширину i данного участка пути необходимо увеличить до такой величины, чтобы соблюдалось условие (13). В этом случае время движения по участку i определяется по формуле (12).

Если увеличение ширины участка невозможно, расчетное время эвакуации определяется с учетом задержки движения, возникающей перед границей i -го участка:

, (15)

где v пр – скорость движения при предельной плотности (
), м/мин;

 i – время задержки движения на i -ом участке, мин.

Как было показано выше (7),

.

Где
, если
и
, если

Схема к определению расчетного времени эвакуации приведена на рис. 1.

Рис.1. Слияние людских потоков

Необходимое время эвакуации

Необходимое время эвакуации – время, по истечении которого при пожаре на уровне рабочей зоны появляются опасные для жизни и здоровья людей значения ОФП.

Необходимое время эвакуации рассчитывается как произведение критической для человека продолжительности пожара на коэффициент безопасности. Предполагается, что каждый опасный фактор воздействует на человека независимо от других.

Критическая продолжительность пожара для людей, находящихся на этаже очага пожара, определяется из условия достижения одним из ОФП в поэтажном коридоре своего предельного допустимого значения. В качестве критерия опасности для людей, находящихся выше очага пожара, рассматриваются условия достижения одним из ОФП предельно допустимого значения в ЛК на уровне очага пожара.

Значения температуры среды, оптической плотности дыма, концентрации кислорода и каждого газообразного токсичного продукта горения в коридоре очага пожара и в лестничной клетке определяются в результате решения системы уравнений теплогазообмена для помещений очага пожара, поэтажного коридора и лестничной клетки.

Ориентировочные критические значения ОФП:

температура среды 70 ˚С

коэффициент ослабления видимости 0,46

концентрация кислорода 15 %

концентрация веществ в воздухе, кг/м 3:

хлористого водорода 23·10 -6

окиси углерода 1,16·10 -3

двуокиси углерода 0,11

кислорода 214 (или 15 %).

Расчет необходимого времени эвакуации н производится для наиболее опасного варианта развития пожара, характеризующегося наибольшим темпом нарастания ОФП в рассматриваемом помещении. Сначала рассчитывают значения критической продолжительности пожара ( кр ) по условию достижения каждым из ОФП предельно допустимых значений в зоне пребывания людей (рабочей зоне):

по повышенной температуре;

по потере видимости;

по пониженному содержанию кислорода;

по каждому из газообразных продуктов горения.

Следует иметь в виду, что наибольшей опасности при пожаре подвергаются люди, находящиеся на более высокой отметке. Поэтому, например, при определении необходимого времени эвакуации людей из партера зрительного зала с наклонным полом следует ориентироваться на наиболее высоко расположенные ряды кресел.

Исходные данные для проведения расчетов могут быть взяты из справочной литературы.

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное:

Необходимое время эвакуации людей, мин., из рассматриваемого помещения рассчитывают по формуле:

. (17)

При расположении людей на различных по высоте площадках необходимое время эвакуации следует определять для каждой площадки.

Если расчетное время эвакуации р меньше или равно необходимому времени эвакуации н проект удовлетворяет требованиям норм.

Расчетное время эвакуации людей из помещений и зданий устанавливается по расчету времени движения одного или нескольких людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной l i и шириной b i . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т. п.

При определении расчетного времени длина и ширина каждого участка пути эвакуации принимаются по проекту. Длина пути по лестничным маршам, а также по пандусам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельным участком горизонтального пути, имеющим конечную длину l i .

Расчетное время эвакуации людей ( t р) следует определять как сумму времени движения людского потока по отдельным участкам пути t i (по формуле

t р =t 1+ t 2+ t 3 +, ..., t i (6)

где t 1 - время движения людского потока на первом (начальном) участке, мин;

t 2 , t 3 ,..., t i - время движения людского потока на каждом из следующих после первого участка пути мин.

Время движения людского потока по первому участку пути ( t 1), мин, вычисляют по формуле

где l 1 - длина первого участка пути, м;

v 1 , - значение скорости движения людского потока по горизонтальному пути на первом участке, определяется по табл. 2 в зависимости от плотности D , м/мин.

Плотность людского потока ( D 1) на первом участке пути, м 2/м 2, вычисляют по формуле

(8)

где N 1 - число людей на первом участке, чел.;

f - средняя площадь горизонтальной проекции человека, принимаемая равной, м 2,

взрослого в домашней одежде............................0,1

взрослого в зимней одежде..................................0,125

подростка....................................................................0,07

b 1 , - ширина первого участка пути, м.

Скорость v 1 движения людского потока на участках пути, следующих после первого, принимается по табл. 2 в зависимости от значения интенсивности движения людского потока по каждому из этих участков пути, которое вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле

где b i , b i -1 - ширина рассматриваемого i - г o и предшествующего ему участка пути, м;

q i , q i -1 - значения интенсивности движения людского потока по рассматриваемому i -му и предшествующему участкам пути, м/мин, значение интенсивности движения людского потока на первом участке пути ( q = q i -1), определяемое по табл. 2 по значению D 1 установленному по формуле (8).

Таблица 2

Ошибки. В данной таблице ГОСТ допущены 2 ошибки:

В таблице 2 ГОСТ содержится 2 ошибки.

1. Пропущена графа (видимо по ошибке наборщика, так как например, она есть в СНиП 2. II - 80) соответствующая значению плотности 0.6 м 2/м 2.

2. Для движения по лестнице вниз при плотности 0.3 м 2/м 2 интенсивность движения равна 15.6 (а не 16.6) м/мин.

Примечание. Табличное значение интенсивности движения в дверном проеме при плотности потока 0,9 и более, равное 8,5 м/мин, установлено для дверного проема шириной 1,6 м и более, а при дверном проеме меньшей ширины d интенсивность движения следует определять по формуле

Если значение q i , определяемое по формуле (9), меньше или равно значению q max , то время движения по участку пути ( t i) в минуту

при этом значения q max следует принимать равными, м/мин:

для горизонтальных путей.........................16,5

для дверных проемов..................................19,6

для лестницы вниз........................................16

для лестницы вверх.....................................11

Если значение q i , определенное по формуле (9), больше q max , то ширину b i данного участка пути следует увеличивать на такое значение, при котором соблюдается условие

q i ? q max . (11)

При невозможности выполнения условия (11) интенсивность и скорость движения людского потока по участку пути i определяют по табл. 2 при значении D =0,9 и более. При этом должно учитываться время задержки движения людей из-за образовавшегося скопления.

При слиянии вначале участка i двух и более людских потоков (черт. 1) интенсивность движения ( q i ,), м/мин, вычисляют по формуле

(12)

где q i -1 - интенсивность движения людских потоков, сливающихся в начале участка i , м/мин.

b i -1 - ширина участков пути слияния, м;

b i - ширина рассматриваемого участка пути, м.

Черт. 1. Слияние людских потоков

Если значение q i , определенное по формуле (12), больше q max , то ширину d i данного участка пути следует увеличивать на такую величину, чтобы соблюдалось условие (11). В этом случае время движения по участку i определяется по формуле (10).

Замечание к расчету:

Значение времени начала эвакуации t н.э для зданий (сооружений) без систем оповещения вычисляют по результатам исследования поведения людей при пожарах в зданиях конкретного назначения.

При наличии в здании системы оповещения о пожаре значение времени задержки начала эвакуации t н.э. принимают равной времени срабатывания системы с учетом ее инерционности. При отсутствии необходимых исходных данных... в зданиях (сооружениях) без систем оповещения величину t н.э. следует принимать равной 0.5 мин для этажа пожара и 2 мин - для вышележащих этажей. Если местом пожара является зальное помещение, где пожар может быть обнаружен одновременно всеми находящимися в нем людьми, то t н.э допускается принимается равным нулю" (ГОСТ 12.1.004-91 (с.16)).

Уважаемый novik_n ®, очень доволен беседой, особенно доволен тем, что нам удаётся вести именно заинтересованную беседу, а не безобразные споры. В целом наша беседа проходит под эпиграфом: «У кого чего болит, тот о том и говорит». Я говорю: «Само словосочетание "расчет по оценке пожарного риска" - не имеет право на существование, точно так же как и словосочетание «Расчет времени эвакуации» - не имеет право на самостоятельное существование, так как такая постановка вопроса заведомо гарантированно вводит доверчивого потребителя «расчётов» в заведомое заблуждение». Вы категорически не согласны с такими словами, потому что ощущаете в себе способность добиться от методик расчётов некоторого изящества и адекватности результатов, и говорите: «Системы противопожарной защиты следует разрабатывать на основе адекватных расчетов. Если этого не признавать, грош цена противопожарной защите на объекте». Уважаемый Н*о*В*а*Т*о*Р ® же, обладая очень разносторонней практикой, обесценивает Ваши научные труды, говоря так: «Просто расчеты для должностных лиц на местах - что в экспертизе, что в ГПН - повод на что-то сослаться, чуть сгрузить ответственность - легче принимать решения. Не было б страха, - не было б расчетов. И смотрят только на одно - на вывод… …последнее, что нужно доделать… - добиться какой-то легитимности каких-либо программных продуктов (любых, уже не соль важно лично мне)».
Но давайте выявим корень зла, который приводит нас к противоречиям между собой. Корень зла – это неправильная концепция МЧС, которая полностью исказила само понятие «пожарная безопасность»…. Это не я противопоставляю пожарную профилактику противопожарной защите или работе пожарных подразделений по тушению пожаров. Это МЧС истребило само понятие пожарной профилактики. До МЧС оценка пожарной опасности объекта, наряду с обучением работников мерам пожарной безопасности, относились к пожарно-профилактической работе. Расчеты по оценке пожарного риска нужны были профилактику только как самые приблизительные и только для помощи в определении главного направления профилактического удара по самой возможности возникновения пожара и (или) по ограничению его последствий. Теперь же инспектор ГПН – это кто угодно, только не профилактик. Теперь расчеты по оценке пожарного риска заменяют собой самого профилактика и саму профилактику. Расчёты сами по себе теперь приобретают некую самоценность. Это и есть тупиковый путь «развития» пожарной безопасности, выбранный мчс. Тупик этого тупика хочу проиллюстрировать сравнением двух случаев эвакуации людей в равных условиях, но с разными последствиями:
1ый случай - http://www.gazeta.kz/art.asp?aid=93336 09.07.07. В международном аэропорту Алматы при взлете воздушного судна "Airbus-300" турецкой авиакомпании "Атлас Джетта" №ККК741 на Анталью отказал первый двигатель", - пояснили в пресс-службе. В "Службе спасения" подчеркнули, что командиром экипажа было принято решение об аварийном торможении, в результате чего произошло загорание шасси "пожар колодок". По данным МЧС, силами пожарной службы аэропорта и вооруженных сил из салона было эвакуировано 213 пассажиров, в том числе 49 детей. "В ходе эвакуации по шести надувным трапам из-за возникшей паники, вызвавшей давку, пострадали и госпитализированы в больницы города 6 человек, из них двое детей - 10 и 8 лет", - отметили в пресс-службе.
2ой случай - http://www.yoki.ru/news/social/secur... 16.08.2007. В питерском аэропорту «Пулково» произошло очередное ЧП с самолётом. В вылетающем в Норильск Ил-86 произошло задымление. На борту были 214 человек. Едва сев в самолёт, все 214 пассажиров стали дружно жаловаться на задымление. Они были эвакуированы. Никто из людей не пострадал. Причиной задымления стал отказ электрической части кухонного оборудования самолёта. На лётное поле пришлось вызвать пожарных.
Я знаю ответ, почему в первом случае есть 6 пострадавших, а во втором случае – пострадавших нет. Ответ находится в рамках пункта 16 ППБ 01-03, а именно: «На объектах с массовым пребыванием людей (50 и более человек) в дополнение к схематическому плану эвакуации людей при пожаре должна быть разработана инструкция, определяющая действия персонала по обеспечению безопасной и быстрой эвакуации людей, по которой не реже одного раза в полугодие должны проводиться практические тренировки всех задействованных для эвакуации работников». Точность расчётов времени безопасной эвакуации, да и сами расчёты – не имеют отношения к реальной безопасности людей (никогда не имели и не будут иметь в дальнейшем). В первом случае персонал самолёта самоустранился от управления процессом эвакуации, а во втором случае персонал был обучен и подготовлен к обеспечению безопасной и быстрой эвакуации людей. Скажем снова: мчс не способно обеспечить пожарную безопасность в стране, потому что принципиально игнорирует самое главное - установление и поддержание противопожарного режима и развитие культуры пожаробезопасного поведения. МЧС не способно развивать у населения навыки пожаробезопасного поведения. МЧС способно либо ликвидировать пожары, либо ликвидировать сами условия возможности возникновения пожара (при этом желательно вместе с самими людьми и вместе с самими зданиями). Правильно, насчитал риски – и приостановил эксплуатацию здания. А зачем учить людей? Они же всё равно все идиоты и пьяницы… Давайте загоним их в такие рамки, чтобы: «Индивидуальный пожарный риск в зданиях, сооружениях и строениях не должен превышать значение одной миллионной в год при размещении отдельного человека в наиболее удаленной от выхода из здания, сооружения и строения точке». А если и учить людей, то чему МЧС может научить? Правильно: «Для производственных объектов, на которых обеспечение величины индивидуального пожарного риска одной миллионной в год невозможно в связи со спецификой функционирования технологических процессов, допускается увеличение индивидуального пожарного риска до одной десятитысячной в год. При этом должны быть предусмотрены меры по обучению персонала действиям при пожаре и по социальной защите работников, компенсирующие их работу в условиях повышенного риска».
«Может и автомобили начнем конструировать в расчете на вождение в пьяном состоянии?» - А ТО КАК ЖЕ ЕЩЁ! Раз МЧС занялось глупостями, то в этом направлении и движется. Кое-кто уже и в Думу внёс предложение об обязательной установке на машины алкотестеров. Правильно, зачем учить людей? Они же всё равно все идиоты и пьяницы. Надо сделать так, чтоб у пьяного машина не завелась. Отсюда и браслеты для старичков - самозвенящие и вибрирующие.
Теперь скажу, что будет. Пожаров будет ещё больше, людей погибнет ещё больше. С целью сокрытия реального числа пожаров МЧС непременно добьётся изменения законодательного определения термина «пожар» и свяжет его либо с площадью, либо с возможностью-невозможностью ликвидации первичными средствами пожаротушения. Хотя и введение ответственности в виде приостановки деятельности юридических лиц и предпринимателей за нарушения ПБ, приведшие к пожару даже без гибели людей, итак значительно снизит число зарегистрированных пожаров. С целью сокрытия реального числа погибших при пожарах МЧС будет и дальше «совершенствовать» порядок учёта погибших при пожарах. Возможно, что МЧС сольёт воедино статистику погибших при пожарах и статистику погибших при иных чрезвычайных ситуациях – общая цифра будет приемлемая.

При возникновении возгораний организуется вывод людей из зданий и сооружений. Определение минимального времени эвакуации людей при пожаре — задача сложная из-за необходимости учета множества факторов, часть из которых неопределенная. Для ее решения используются специальные методики, разработанные специалистами профильных научно-исследовательских институтов Министерства по чрезвычайным ситуациям.

Рис. 1. Расчет времени эвакуации людей при пожаре. Пути вывода.

Означенные методики предусматривают определенный порядок выполнения вычислений необходимого времени эвакуации на основании исходных данных. При этом учитываются размеры и планировка зданий, пропускная способность эвакуационных выходов и путей. Рассматриваются также возможные сценарии развития и распространения пожаров, в том числе и наиболее опасные схемы.

Расчет необходимого времени безопасной эвакуации людей при пожаре имеет своей целью максимальный период времени, которой требуется для выхода из здания персонала и посетителей. При этом воздействие опасных и вредных факторов (задымление, высокая температура и обрушение конструкций) не должно достигнуть критических значений.

Необходимость в определении расчетного времени эвакуации людей и нормативная база

Обеспечение безопасности персонала и посетителей общественных и производственных зданий находится в компетенции их собственников. Определение расчетного времени эвакуации при пожаре является обязательным и производится в ходе его проектирования. Означенный расчет должен быть приведен в описательной части проекта в 9 разделе, при составлении перечня мероприятий по обеспечению пожарной безопасности.

Данное требование, а также порядок расчетов предусмотрен действующими нормативно-правовыми актами:

  • Закон № 123-ФЗ. Этим документом введен в действие технический регламент о требованиях в сфере пожарной безопасности объектов.
  • Постановление Правительства РФ, регламентирующее состав пакета проектной документации (№ 87 от 16 февраля 2008 года в редакции от 13 декабря 2017 года).
  • Приказ МЧС России от 30.06.2009 г. №382
  • Приказ МЧС России от 10.07.2009 г. № 404

Отсутствие расчетов времени полного и безопасного вывода людей при пожаре из зданий и сооружений промышленных или общественных, в составе проектной документации, является обязательным при разработке специальных технических условий или при отступлениях от требований нормативных документов по пожарной безопасности. Отсутствие расчета пожарного риска в таких случаях является достаточным для отказа в выдаче разрешения на строительство объекта компетентными органами.

При определении требуемого времени на безопасный вывод из здания людей при пожаре принимаются во внимание основные пожарные риски. В ходе проектирования на данном этапе обосновывается ряд основных показателей объектов. В части касающейся вывода людей из опасных зон определяется состав, размещение и размеры путей эвакуации, а также параметры основных и дополнительных выходов. Ко всему прочему, осуществляется разработка систем оповещения при возникновении чрезвычайных ситуаций и в частности пожаров.

Методы расчетов времени эвакуации персонала и посетителей

В настоящее время существуют две математические модели, описывающие передвижение людей при пожаре, индивидуально-поточная и упрощённо-аналитическая. На их основе были разработаны соответствующие методики, позволяющие произвести расчет требуемого времени на эвакуацию людей при разных сценариях пожара. Упомянутые способы определения продолжительности вывода людей имеют некоторые особенности. Подробное описание и применение означенных методик утверждено приказом Министра по чрезвычайным ситуациям от 30 сентября 2009 года № 382.

Упомянутые методики расчетов времени, нужного на эвакуацию при пожаре предполагают использование сложного математического аппарата. Это требует от проектировщика высокой квалификации и специального образования. В целях экономии времени компанией « » были разработаны два программных комплекса: « » и «Фогард РВ+». Они позволяют выполнять вычисления в режиме онлайн, используя специальные приложения на официальном сайте.

Порядок выполнения расчетов времени эвакуации

При определении продолжительности эвакуационных мероприятий учитывается назначение объекта. Методики, используемые для общественных зданий и производственных сооружений, имеют существенные различия. Определить необходимое время эвакуации людей требуется для мест размещения, которые находятся на наибольшем удалении от выходов с учетом их движения по предусмотренным путям. Для проведения таких расчетов нужна точная информация о проектируемом здании и его размерах, а также о возможных сценариях развития ситуации при пожаре. При этом необходимо рассматривать наиболее опасный вариант.

Исходные данные

Для определения продолжительности эвакуации посетителей и персонала для отдельных помещений и здания или сооружений в целом потребуется ряд сведений.

Расчеты проводятся с использованием следующих промежуточных величин:

  • Плотность потока при передвижении людей во время пожара.
  • Скорость перемещения персонала в процессе выхода из опасных зон.
  • Пропускная способность для каждого из путей эвакуации при возгораниях и задымлениях.
  • Максимальная интенсивность движения.
  • Общая протяженность путей эвакуации и в том числе их горизонтальных участков (коридоры и помещения) и наклонных (лестничные переходы).

Рис. 2. Эвакуация людей из опасной зоны здания по лестнице во время пожара

Геометрические параметры помещений

Выполняется расчет эвакуации людей с учетом линейных размеров помещении.

При этом используются следующие характеристики зданий и сооружений:

  • Объем помещения геометрический, который вычисляется как произведение высоты, ширины и длины с учетом особенностей планировки.
  • Общая приведенная высота. Определятся, как отношение геометрического объема к площади проекции помещения на горизонтальную плоскость.
  • Высота рабочих зон. Устанавливается исходя из разности высот пола в месте нахождения персонала и посетителей и самой низкой точки.

Правильный расчет пожарных рисков основывается на том обстоятельстве, что наибольшей угрозе воздействия опасных факторов подвергаются люди или объекты, находящиеся на самой верхней отметке. Для помещений с горизонтальным полом во всех точках риск считается одинаковым.

Выбор схемы распространения пожара

Период времени, при котором уровень воздействия опасных и вредных факторов на персонал и посетителей становится критическим, зависит от нескольких обстоятельств. Один из основных параметров — это площадь возгорания, которая в свою очередь обуславливается свойствами и характеристиками используемых при строительстве и отделке материалов.

Наибольшую опасность для людей при пожаре представляют легковоспламеняющиеся жидкости (ГСМ, растворители, краски, нефтепродукты и другие). Они способны растекаться по горизонтальным и вертикальным поверхностям и приводить к воспламенению других материалов.

При проведении вычислений рассматриваются следующие варианты распространения огня:

  • круговое;
  • в виде прямоугольника с расширением очага по двум и более сторонам;
  • с криволинейным фронтом распространения пламени.

Производится расчет путей эвакуации работников и посетителей с учетом вышеназванных факторов. При этом следует учитывать, что последний из вариантов наиболее сложный и относится к категории наиболее трудно прогнозируемых.

Расчет времени продолжительности пожара для определенного сценария развития

Определение данного показателя производится с учетом теплоты, выделяемой при сгорании материалов, и свободного объема помещения.

На следующем этапе расчетов временных показателей эвакуации людей при пожаре выполняются вычисления для каждого из опасных факторов:

  • Повышение температуры воздуха с учетом начального значения для отдельного помещения.
  • Снижение видимости увеличивает необходимое время для полной эвакуации людей при пожаре. Показатель определяется исходя из коэффициентов оптического отражения предметов, расположенных на эвакуационных путях.
  • Уменьшение концентрации кислорода в помещениях, при этом используется удельный показатель расхода кислорода на сгорание материалов.
  • Отдельный расчет производится для каждого из токсичных газов, содержащихся в помещении. Речь идет о продуктах, которые выделяются при воспламенении горючих материалов.

Точный расчет пожарных рисков и в частности продолжительности для определенного варианта развития событий осуществляется по специальной формуле. В ней используются данные полученные в результате перечисленных вычислений. Критический период времени рассчитывается для каждой из схем распространения пламени и образования очагов возгорания.

Определение наиболее опасного сценария развития пожара в здании

На следующем этапе устанавливается количество материала, выгоревшего к моменту, когда опасные факторы принимают критические значения. Все полученные в результате вычислений показатели сравниваются между собой и наименьшие из них исключаются как представляющие наименьшую угрозу для посетителей и персонала. Для дальнейших расчетов параметров путей эвакуации при пожаре используется наименьших критический показатель продолжительности. Такой сценарий развития ситуации представляется наиболее опасным и при определении времени вывода людей из горящих зданий и сооружений разного назначения исходят из него.

Определение необходимого времени эвакуации персонала и посетителей при пожаре

Продолжительность данного процесса зависит от множества факторов, значительная часть из которых не поддается точному вычислению. Для того чтобы сравнительно точно вычислить время эвакуации людей при появлении очагов возгорания в здании вводится специальный коэффициент безопасности. Временной период, требуемый для вывода персонала и посетителей, определяется, как произведение критической продолжительности наиболее опасного сценария развития пожара и упомянутой выше поправки.

Описанный в статье расчет времени эвакуации людей производится исходя из данных, которые берутся из таблиц для определенных категорий помещений. Процесс вычислений с учетом сложности используемого математического аппарата занимает много времени даже для квалифицированного специалиста. Применение онлайн-приложений «Фогард» позволяет существенно уменьшить трудозатраты на проведение расчетов.

Если вам необходимо определить время эвакуации работников при пожаре из производственного сооружения или посетителей общественного здания предлагаем воспользоваться возможностями нашего сервиса. Более подробную информацию о порядке использования программного комплекса или по иным вопросам сотрудничества можно получить, позвонив по телефону 8-800-500-41-97. Все консультации предоставляются специалистами компании бесплатно.

Условия использования программ Фогард-Рв и Фогард-Рв+

Открытие доступа к полным функциональным возможностям проекта осуществляется на коммерческой основе. Вы можете на определенный промежуток времени (месяц/полгода/год) для регулярного использования подходящего набора программ, либо приобрести разовый расчет в нужном программном комплексе. Если у вас возникнут трудности с самостоятельным определением времени эвакуации людей во время пожара, тогда воспользуйтесь платными услугами наших инженеров. Вся необходимая ознакомительная информация размещена на , а также ответы на вопросы можно получить у менеджера по телефону 8-800-500-41-97 .

ООО "Интернэкс"©. Все права защищены.
Написанное выше является личным мнением автора и не может быть использовано в спорах в судебных или иных государственных органах.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшегопрофессионального образования «Оренбургский государственный университет»

Кафедра безопасности жизнедеятельности

РАСЧЕТ ВРЕМЕНИ ЭВАКУАЦИИ


Введение

1 Расчет допустимой продолжительности эвакуации при пожаре

2 Расчет времени эвакуации

3 Пример расчета

Список использованных источников

Приложение А. Таблица АЛ – Категории производства

Приложение Б. Таблица Б.1 – Степень огнестойкости для различныхзданий

Приложение В. Таблица В.1 – Средняя скорость выгорания и теплотасгорания веществ и материалов

Приложение Г. Таблица Г.1 – Линейная скорость распространенияпламени на поверхности материалов

Приложение Д. Таблица Д. 1 – Время задержки начала эвакуации

Приложение Е. Таблица ЕЛ – Площадь проекции человека. Таблица Е.2 -Зависимость скорости и интенсивности движения от плотности людскогопотока


Введение

Одним из основных способов защиты от поражающих факторов ЧС является своевременная эвакуация и рассредоточение персонала объектов и населения из опасных районов и зон бедствий.

Эвакуация – комплекс мероприятий по организованному выводу или вывозу персонала объектов из зон ЧС или вероятностей ЧС, а также жизнеобеспечение эвакуированных в районе размещения.

При проектировании зданий и сооружений одной из задач является создание наиболее благоприятных условий для движения человека при возможной ЧС и обеспечение его безопасности. Вынужденное движение связано с необходимостью покинуть помещение или здание из-за возникшей опасности (пожар, авария и т.п.). Профессором В.М.Предтеченским впервые рассмотрены основы теории движения людей как важного функционального процесса, свойственного зданиям различного назначения.

Практика показывает, что вынужденное движение имеет свои специфические особенности, которые необходимо учитывать для сохранения здоровья и жизни людей. Установлено, что в США ежегодно на пожарах погибает около 11000 человек. Наиболее крупные катастрофы с человеческими жертвами произошли за последнее время именно в США. Статистика показывает, что наибольшее число жертв приходится на пожары в зданиях с массовым пребыванием людей. Число жертв на некоторых пожарах в театрах, универмагах и других общественных зданиях достигло несколько сотен человек.

Основная особенность вынужденной эвакуации заключается в том, что при возникновении пожара, уже в самой его начальной стадии, человеку угрожает опасность в результате того, что пожар сопровождается выделением тепла, продуктов полного и неполного сгорания, токсических веществ, обрушением конструкций, что так или иначе угрожает здоровью или даже жизни человека. Поэтому при проектировании зданий принимаются меры, чтобы процесс эвакуации мог бы завершиться в необходимое время.

Следующая особенность заключается в том, что процесс движения людей в силу угрожающей им опасности инстинктивно начинается одновременно в одном направлении в сторону выходов, при известном проявлении физических усилий у части эвакуирующихся. Это приводит к тому, что проходы быстро заполняются людьми при определенной плотности людских потоков. С увеличением плотности потоков скорости движения снижаются, что создает вполне определенный ритм и объективность процесса движения. Если при нормальном движении процесс эвакуации носит произвольный характер (человек волен двигаться с любой скоростью и в любом направлении), то при вынужденной эвакуации это становится невозможным.

Показателем эффективности процесса вынужденной эвакуации является время, в течение которого люди могут при необходимости покинуть отдельные помещения и здание в целом.

Безопасность вынужденной эвакуации достигается в случае, если продолжительность эвакуации людей из отдельных помещений или зданий в целом будет меньше продолжительности пожара, по истечении которой возникают опасные для человека воздействия.

Кратковременность процесса эвакуации достигается конструктивно-планировочными и организационными решениями, которые нормируются соответствующими СНиПами.

Ввиду того, что при вынужденной эвакуации не каждая дверь, лестница или проем могут обеспечить кратковременную и безопасную эвакуацию (тупиковый коридор, дверь в соседнее помещение без выхода, оконный проем и др.), нормы проектирования оговаривают понятия «эвакуационный выход» и «эвакуационный путь».

Согласно нормам (СНиП П-А. 5–62, п. 4.1) эвакуационными выходами считаются дверные проемы, если они ведут из помещений непосредственно наружу; в лестничную клетку с выходом наружу непосредственно или через вестибюль; в проход или коридор с непосредственным выходом наружу или в лестничную клетку; в соседние помещения того же этажа, обладающие огнестойкостью не ниже III степени, не содержащие производств, относящихся по пожарной опасности к категориям А, Б и В, и имеющие непосредственный выход наружу или в лестничную клетку (см. приложение А) .

Все проемы, в том числе и дверные, не обладающие указанными выше признаками, не считаются эвакуационными и в расчет не принимаются.

К эвакуационным путям относят такие, которые ведут к эвакуационному выходу и обеспечивают безопасное движение в течение определенного времени. Наиболее распространенными путями эвакуации являются проходы, коридоры, фойе и лестницы. Пути сообщения, связанные с механическим приводом (лифты, эскалаторы), не относятся к путям эвакуации, так как всякий механический привод связан с источниками энергии, которые могут при пожаре или аварии выйти из строя.

Запасными выходами называют такие, которые не используются при нормальном движении, но могут быть использованы в случае необходимости при вынужденной эвакуации. Установлено, что люди обычно пользуются при вынужденной эвакуации входами, которые ими использовались при нормальном движении. Поэтому в помещениях с массовым пребыванием людей запасные выходы в расчет эвакуации не принимаются .

Основными параметрами, характеризующими процесс эвакуации из зданий и сооружений, являются:

Плотность людского потока (D);

Скорость движения людского потока (v);

Пропускная способность пути (Q);

Интенсивность движения (q) ;

Длина эвакуационных путей, как горизонтальных, так и наклонных;

Ширина эвакуационных путей.

Плотность людских потоков. Плотность людских потоков можно измерять в различных единицах. Так, например, для определения длины шага человека и скорости его движения удобно знать среднюю длину участка эвакуационного пути, приходящуюся на одного человека. Длина шага человека принимается равной длине участка пути, приходящейся на человека, за вычетом длины ступни (рисунок 1).

Рисунок 1 – Схема к определению длины шага и линейной плотности

В производственных зданиях или помещениях с небольшой заселенностью плотность может быть более 1 м/чел. Плотность, измеряемую длиной пути на одного человека, принято называть линейной и измерять в м/чел. Обозначим линейную плотность Д.

Более наглядной единицей измерения плотности людских потоков является плотность, отнесенная к единице площади эвакуационного пути и выражаемая в чел/м 2 . Эта плотность называется абсолютной и получается путем деления количества людей на площадь занятого ими эвакуационного пути и обозначается Др. Пользуясь этой единицей измерения, удобно определять пропускную способность эвакуационных путей и выходов. Эта плотность может колебаться от 1 до 10–12 чел./м 2 для взрослых людей и до 20–25 чел./м для школьников.

По предложению кандидата технических наук А.И. Милинского, плотность потоков измеряют как отношение части площади проходов, занятой людьми, к общей площади проходов. Эта величина характеризует степень заполнения эвакуационных путей эвакуирующимися. Часть площади проходов, занятую людьми, определяют как сумму площадей горизонтальных проекций каждого человека (приложение Е, таблица ЕЛ). Площадь горизонтальной проекции одного человека зависит от возраста, характера, одежды и колеблется в пределах от 0,04 до 0,126 м 2 . В каждом отдельном случае площадь проекции одного человека может быть определена, как площадь эллипса:

(1)

где а – ширина человека, м; с – его толщина, м.

Ширина взрослого человека в плечах колеблется от 0,38 до 0,5 м, а толщина – от 0,25 до 0,3 м. Имея в виду различный рост людей и некоторую сжимаемость потока за счет одежды, плотность может в отдельных случаях превышать 1 м /м. Эту плотность назовем относительной, или безразмерной, и обозначим D o .

В связи с тем, что в потоке встречаются люди различного возраста, пола и различной конфигурации, данные о плотности потоков представляют в известной степени усредненные значения.

Для расчетов вынужденной эвакуации вводится понятие расчетной плотности людских потоков. Под расчетной плотностью людских потоков подразумевается наибольшее значение плотности, возможное при движении на каком-либо участке эвакуационного пути. Максимально возможное значение плотности называется предельным. Под предельным подразумевают такое значение плотности, при превышении которого вызывается механическое повреждение человеческого тела или асфиксия.

При необходимости можно от одной размерности плотности перейти к другой. При этом можно пользоваться следующими соотношениями:


Где f– средний размер площади проекции одного человека, м /чел.;

а – ширина человека, м.

При массовых людских потоках длина шага ограничивается и зависит от плотности потоков. Если принять среднюю длину шага взрослого человека твной 70 см, а длину ступни – равной 25 см, то линейная плотность, при которой возможно движение с указанной длиной шага, будет:

0,7+ 0,25 = 0,95.

Практически считают, что шаг длиной 0,7 м сохранится и при линейной плотности, равной 0,8. Это объясняется тем, что при массовых потоках человек продвигает ногу между впереди идущими, что и способствует сохранению дайны шага.

Скорость движения. Обследования скоростей движения при предельных плотностях показали, что минимальные скорости на горизонтальных участках пути колеблются в пределах от 15 до 17 м/мин. Расчетная скорость движения, узаконенная нормами проектирования для помещений с массовым пребыванием людей, принимается равной 16 м/мин.

На участках эвакуационного пути или в зданиях, где заведомо плотности потоков при вынужденном движении будут меньше предельных значений, скорости движения будут соответственно больше. В этом случае при определении скорости вынужденного движения исходят из длины и частоты шага человека. Для практических расчетов можно скорость движения определять по формуле:

(4)

где п – число шагов в мин, равное 100.

Скорость движения при предельных плотностях по лестнице вниз получена 10 м/мин, а по лестнице вверх – 8 м/мин.

Пропускная способность выходов. Под удельной пропускной способностью выходов подразумевают количество людей, проходящих через выход шириной в 1 м за 1 мин.

Наименьшее значение удельной пропускной способности, полученное опытным путем, при данной плотности именуется расчетной удельной пропускной способностью. Удельная пропускная способность выходов зависит от ширины выходов, плотностей людских потоков и отношения ширины людских потоков к ширине выхода.

Нормами установлена пропускная способность дверей шириной до 1,5 м, равная 50 чел./м-мин, а шириной более 1,5 м 60 чел./м-мин (для предельных плотностей).

Размеры эвакуационных выходов. Кроме размеров эвакуационных путей и выходов, нормы регламентируют их конструктивно-планировочные решения, обеспечивающие организованное и безопасное движение людей.

Пожарная опасность производственных процессов в промышленных зданиях характеризуется физико-химическими свойствами веществ, образующихся в производстве. Производства категорий А и Б, в которых обращаются жидкости и газы, представляют особую опасность при пожарах в силу возможности быстрого распространения горения и задымления зданий, поэтому протяженность путей для них является наименьшей. В производствах категории В, где обращаются твердые горючие вещества, скорость распространения горения меньше, срок эвакуации может быть несколько увеличен, а следовательно, и протяженность путей эвакуации будет больше, чем для производства категорий А и В. В производствах категорий Г и Д, размещаемых в зданиях I и II степеней огнестойкости, протяженность путей эвакуации не ограничивается (для определения категории здания см. приложение А).

При нормировании исходили из того, что количество эвакуационных путей, выходов и их размеры должны одновременно удовлетворять четырем условиям:

1) наибольшее фактическое расстояние от возможного места пребываниячеловека по линии свободных проходов или от двери наиболее удаленногопомещения 1 ф до ближайшего эвакуационного выхода должно быть меньше илиравно требуемому по нормам 1 тр

2) суммарная ширина эвакуационных выходов и лестниц,предусмотренная проектом, д ф должна быть больше или равна требуемой понормам

3) количество эвакуационных выходов и лестниц по соображениямбезопасности должно быть, как правило, не меньше двух.

4) ширина эвакуационных выходов и лестниц не должна быть меньшеили больше значений, предусмотренных нормами .

Обычно в производственных зданиях протяженность путей эвакуации измеряют от наиболее удаленного рабочего места до ближайшего эвакуационного выхода. Чаще всего эти расстояния нормируют в пределах первого этапа эвакуации. При этом косвенно увеличивается общая продолжительность эвакуации людей из здания в целом. В многоэтажных зданиях протяженность путей эвакуации в помещениях будет меньше, чем в одноэтажных. Это совершенно правильное положение дано в нормах.

Степень огнестойкости здания также влияет на протяженность эвакуационных путей, так как она предопределяет скорость распространения горения по конструкциям. В зданиях I и II степеней огнестойкости протяженность путей эвакуации при прочих равных условиях будет больше, чем в зданиях III, IV и V степеней огнестойкости.

Степень огнестойкости зданий определяется минимальными пределами огнестойкости строительных конструкций и максимальными пределами распространения огня по этим конструкциям, при определении степени огнестойкости необходимо воспользоваться приложением Б.

Протяженность путей эвакуации для общественных и жилых зданий предусматривается, как расстояние от дверей наиболее удаленного помещения до выхода наружу или в лестничную клетку с выходом наружу непосредственно или через вестибюль. Обычно при назначении величины предельного удаления учитываются назначение здания и степеньогнестойкости. Согласно СНиП П-Л.2–62 «Общественные здания», протяженность путей эвакуации до выхода в лестничную клетку незначительна и удовлетворяет требованиям безопасности.

1. Расчет допустимой продолжительности эвакуации при пожаре

При возникновении пожара опасность для человека составляют высокие температуры, снижение концентрации кислорода в воздухе помещений и возможность потери видимости вследствие задымления зданий.

Время достижения критических для человека температур и концентраций кислорода на пожаре именуется критической продолжительностью пожара и обозначается .

Критическая продолжительность пожара зависит от многих переменных:

(1.1)

где – объем воздуха в рассматриваемом здании или помещении, м 3 ;

с – удельная изобарная теплоемкость газа, кДж/кг-град;

t Kp критическая для человека температура, равная 70°С;

t H начальная температура воздуха, °С;

коэффициент, характеризующий потери тепла на нагрев конструкций и окружающих предметов принимается в среднем равным 0,5;

Q теплота сгорания веществ, кДж/кг, (приложение В);

f – площадь поверхности горения, м 2 ;

п – весовая скорость горения, кг/м 2 -мин (приложение В);

v линейная скорость распространения огня по поверхности горючих веществ, м/мин (приложение Г).

Для определения критической продолжительности пожара по температуре в производственных зданиях с применением легковоспламеняющихся и горючих жидкостей можно воспользоваться формулой, полученной на основании уравнения теплового баланса:


Свободный объем помещения соответствует разности между геометрическим объемом и объемом оборудования или предметов, находящихся внутри. Если рассчитывать свободный объем невозможно, допускается принимать его равным 80% геометрического объема.

Удельная теплоемкость сухого воздуха при атмосферном давлении 760 мм. рт. ст., согласно табличным данным составляет 1005 кДж/кг-град при температуре от 0 до 60°С и 1009 кДж/кг-град при температуре от 60 до 120°С.

Применительно к производственным и гражданским зданиям с применением твердых горючих веществ критическая продолжительность пожара определяется по формуле:

(1.3)

По снижению концентрации кислорода в воздухе помещения критическую продолжительность пожара определяют по формуле:

(1.4)

где W02 – расход кислорода на сгорание 1 кг горючих веществ, м /кг, согласно теоретическому расчету составляет 4,76 огмин .

Линейная скорость распространения огня при пожарах, по данным ВНИИПО, составляет 0,33–6,0 м/мин, более точные данные для разных материалов представлены в приложении Г.


Критические продолжительности пожара по потере видимости и по каждому из газообразных токсичных продуктов горения больше, чем вышеперечисленные предыдущие, поэтому в расчет не принимаются.

Из полученных в результате расчетов значений критической продолжительности пожара выбирается минимальное:

(1.5)

Допустимую продолжительность эвакуации определяют по формулам:

где и соответственно допустимая продолжительность

эвакуации и критическая продолжительность пожара при эвакуации, мин,

m коэффициент безопасности, зависящий от степени противопожарной защиты здания, его назначения и свойств горючих веществ, образующихся в производстве или являющихся предметом обстановки помещений или их отделки.

Для зрелищных предприятий с колосниковой сценой, отделенной от зрительного зала противопожарной стеной и противопожарным занавесом, при огнезащитной обработке горючих веществ на сцене, наличии стационарных и автоматических средств тушения и средств оповещения о пожаре m = 1,25.

Для зрелищных предприятий при отсутствии колосниковой сцены (кинотеатры, цирки и т.п.) m = 1,25.

Для зрелищных предприятий с эстрадой для концертных представлений т =1,0.

Для зрелищных предприятий с колосниковой сценой и при отсутствии противопожарного занавеса и автоматических средств тушения и оповещения о пожаре т = 0,5.

В производственных зданиях при наличии средств автоматического тушения и оповещения о пожаре т = 2,0.

В производственных зданиях при отсутствии средств автоматического тушения и оповещения о пожаре т= 1,0.

При размещении производственных и других процессов в зданиях III степени огнестойкости т = 0,65–0,7.

Критическая продолжительность пожара для здания в целом устанавливается в зависимости от времени проникновения продуктов горения и возможной потери видимости в коммуникационных помещениях, размещаемых до выхода из здания.

Опыты, проведенные по сжиганию древесины, показали, что время, по истечении которого возможна потеря видимости, зависит от объема помещений, весовой скорости горения веществ, скорости распространения пламени по поверхности веществ и полноты горения. В большинстве случаев существенная потеря видимости при сжигании твердых горючих веществ наступала после того, как в помещении возникали критические для человека температуры. Наибольшее количество дымообразующих веществ наступает в фазе тления, которая характерна для волокнистых материалов.

При горении волокнистых веществ во взрыхленном состоянии в течение 1–2 мин имеет место интенсивное горение с поверхности, после чего начинается тление с бурным дымообразованием. При горении твердых изделий на основе древесины дымообразование и распространение продуктов горения в смежные помещения наблюдаются через 5–6 мин.

Наблюдения показали, что в начале эвакуации решающим фактором для определения критической продолжительности пожара является воздействие тепла на организм человека или снижение концентрации кислорода. При этом учитывается, что даже незначительное задымление, при котором еще сохраняется удовлетворительная видимость, может оказать отрицательное психологическое воздействие на эвакуирующихся.

Оценивая в итоге критическую продолжительность пожара для эвакуации людей из здания в целом, можно установить следующее.

При пожарах в гражданских и производственных зданиях, где основным горючим материалом являются целлюлозные материалы (в том числе древесина), критическая продолжительность пожара может быть принята равной 5–6 мин.

При пожарах в зданиях, где обращаются волокнистые материалы во взрыхленном состоянии, а также горючие и легковоспламеняющиеся жидкости – от 1,5 до 2 мин.

В зданиях, в которых не может быть обеспечена эвакуация людей в течение указанного времени, должны приниматься меры по созданию незадымляемых эвакуационных путей.

В вязи с проектированием зданий повышенной этажности стали широко применяться так называемые незадымляемые лестницы. В настоящее время существует несколько вариантов устройства незадымляемых лестниц. Наиболее популярным является вариант со входом в лестничную клетку через так называемую воздушную зону. В качестве воздушной зоны используются балконы, лоджии и галереи (рисунок 2, а, б).

Рисунок 2 – Незадымляемые лестницы: а – вход в лестничную клетку через балкон; б – вход в лестничную клетку через галерею.

2. Расчет времени эвакуации

Продолжительность эвакуации людей до выхода наружу из здания определяют по протяженности путей эвакуации и пропускной способности дверей и лестниц. Расчет ведется для условий, что на путях эвакуации плотности потоков равномерны и достигают максимальных значений.

Согласно ГОСТ 12.1.004–91 (приложение 2, п. 2.4), общее время эвакуации людей складывается из интервала «времени от возникновения

пожара до начала эвакуации людей», т н э , и расчетного времени эвакуации, t p , которое представляет собой сумму времени движения людского потока по отдельным участкам ( t ,) его маршрута от места нахождения людей в момент начала эвакуации до эвакуационных выходов из помещения, с этажа, из здания.

Необходимость учета времени начала эвакуации впервые в нашей стране установлена ГОСТ 12.1.004–91 . Исследования, проведенные в различных странах, показали, что при получении сигнала о пожаре, человек будет исследовать ситуацию, оповещать о пожаре, пытаться бороться с огнем, собирать вещи, оказывать помощь и т.п. Среднее значение время задержки начала эвакуации (при наличии системы оповещения) может быть невысоким, но может достигать и относительно высоких значений. Например, значение 8,6 мкн было зафиксировано при проведении учебной эвакуации в жилом здании, 25,6 мин в здании Всемирного Торгового Центра при пожаре в 1993 году .

Ввиду того, что продолжительность этого этапа, существенно влияет на общее время эвакуации, очень важно знать, какие факторы определяют его величину (следует иметь ввиду, что большинство этих факторов также будут влиять на протяжении всего процесса эвакуации). Опираясь на существующие работы в этой области, можно выделить следующие:

Состояние человека: устойчивые факторы (ограничение органов чувств, физические ограничения, временные факторы (сон/бодрствование), усталость, стресс, а также состояние опьянения);

Система оповещения;

Действия персонала;

Социальные и родственные связи человека;

Противопожарный тренинг и обучение;

Тип здания.

Время задержки начала эвакуации берется согласно приложению Д.

Расчетное время эвакуации людей ( t P ) следует определять как сумму времени движения людского потока по отдельным участкам пути t f :

......................................................... (2.1)

где – время задержки начала эвакуации;

t 1 – время движения людского потока на первом участке, мин;

t 2 , t 3 ,.......... t i – время движения людского потока на каждом из следующих после первого участкам пути, мин.

При расчете весь путь движения людского потока подразделяется на участки (проход, коридор, дверной проем, лестничный марш, тамбур) длиной /, и шириной bj . Начальными участками являются проходы между рабочими местами, оборудованием, рядами кресел и т.п.

При определении расчетного времени длина и ширина каждого участка пути эвакуации принимаются по проекту. Длина пути по лестничным маршам, а также по пандусам измеряется по длине марша. Длина пути в дверном проеме принимается равной нулю. Проем, расположенный в стене толщиной более 0,7 м, а также тамбур следует считать самостоятельным участком горизонтального пути, имеющим конечную длину.

Время движения людского потока по первому участку пути ( t ;), мин, вычисляют по формуле:

где длина первого участка пути, м;

– значение скорости движения людского потока по горизонтальному пути на первом участке, определяется в зависимости от относительной плотности D, м 2 /м 2 .

Плотность людского потока ( D \) на первом участке пути, м /м, вычисляют по формуле:

где число людей на первом участке, чел.;

f – средняя площадь горизонтальной проекции человека, принимаемая по таблице Е. 1 приложения Е, м 2 /чел.;

и длина и ширина первого участка пути, м.

Скорость V/ движения людского потока на участках пути, следующих после первого, принимается по таблице Е.2 приложения Е в зависимости от значения интенсивности движения людского потока по каждому из этих участков пути, которое вычисляют для всех участков пути, в том числе и для дверных проемов, по формуле:

где , – ширина рассматриваемого i‑гo и предшествующего ему участка пути, м;

, – значения интенсивности движения людского потока по рассматриваемому i‑му и предшествующему участкам пути, м/мин.

Если значение , определяемое по формуле (2.4), меньше или равно значению q max , то время движения по участку пути () в минуту: при этом значения q max , м/мин, следует принимать по таблице 2.1.

Таблица 2.1 – Интенсивность движения людей

Если значение q h определенное по формуле (2.4), больше q max , то ширину bj данного участка пути следует увеличивать на такое значение, при котором соблюдается условие:


При невозможности выполнения условия (2.6) интенсивность и скорость движения людского потока по участку пути i определяют по таблице Е.2 приложения Е при значении D = 0,9 и более. При этом должно учитываться время задержки движения людей из-за образовавшегося скопления.

При слиянии вначале участка i двух и более людских потоков (рисунок 3) интенсивность движения ( }, м/мин, вычисляют по формуле:

(2.7)

- интенсивность движения людских потоков, сливающихся в начале участка /, м/мин;

i ширина участков пути слияния, м;

ширина рассматриваемого участка пути, м.

Если значение определенное по формуле (2.7), больше q max , то ширину - данного участка пути следует увеличивать на такую величину, чтобы соблюдалось условие (2.6). В этом случае время движения по участку i определяется по формуле (2.5).

Интенсивность движения в дверном проеме шириной менее 1,6 м определяется по формуле:

Где b ‑ ширина проема.

Время движения через проем определяется как частное деления количества людей в потоке на пропускную способность проема:

Рисунок 3 – Слияние людских потоков

3. Порядок проведения расчета

· Выбрать из рассчитанных критических продолжительностей пожара минимальную и по ней рассчитать допустимую продолжительность эвакуации по формуле (1.6).

· Определить расчетное время эвакуации людей при пожаре, воспользовавшись формулой (2.1).

· Сравнить расчетное и допустимое время эвакуации, сделать выводы.

4. Пример расчета

Необходимо определить время эвакуации из кабинета сотрудников предприятия «Обус» при возникновении пожара в здании. Административное здание панельного типа, не оборудовано автоматической системой сигнализации и оповещения о пожаре. Здание двухэтажное, имеет размеры в плане 12x32 м, в его коридорах шириной 3 м имеются схемы эвакуации людей при пожаре. Кабинет объемом 126 м 3 расположен на втором этаже в непосредственной близости от лестничной клетки, ведущей на первый этаж. Лестничные клетки имеют ширину 1,5 м и длину 10 м. В кабинете работает 7 человек. Всего на этаже работают 98 человек. На первом этаже работает 76 человек. Схема эвакуации из здания представлена на рисунке 4

Рисунок 4 – Схема эвакуации сотрудников предприятия «Обус»: 1,2,3,4 – этапы эвакуации

4.1 Расчет времени эвакуации

4.1.2. Критическая продолжительность пожара по температуре рассчитывается по формуле (1.3) с учетом мебели в помещении:


4.1.3 Критическая продолжительность пожара по концентрации кислорода рассчитывается по формуле (1.4):

4.1.4 Минимальная продолжительность пожара по температуре
составляет 5,05 мин. Допустимая продолжительность эвакуации для данного
помещения:

4.1.5 Время задержки начала эвакуации принимается 4,1 мин по таблице Д. 1 приложения Д с учетом того, что здание не имеет автоматической системы сигнализации и оповещения о пожаре.

4.1.6 Для определения времени движения людей по первому участку, с учетом габаритных размеров кабинета 6x7 м, определяется плотность движения людского потока на первом участке по формуле (2.3):

.

По таблице Е.2 приложения Е скорость движения составляет 100 м/мин, интенсивность движения 1 м/мин, т.о. время движения по первому участку:


4.1.7 Длина дверного проема принимается равной нулю. Наибольшая возможная интенсивность движения в проеме в нормальных условиях g mffic =19,6 м/мин, интенсивность движения в проеме шириной 1,1 м рассчитывается по формуле (2.8):

q d = 2,5 + 3,75 b = 2,5 + 3,75 1,1 = 6,62 м/мин,

q d поэтому движение через проем проходит беспрепятственно.

Время движения в проеме определяется по формуле (2.9):

4.1.8. Так как на втором этаже работает 98 человек, плотность людского потока второго этажа составит:

По таблице Е2 приложения Е скорость движения составляет 80 м/мин, интенсивность движения 8 м/мин, т.о. время движения по второму участку (из коридора на лестницу):

4.1.9 Для определения скорости движения по лестнице рассчитывается интенсивность движения на третьем участке по формул (2.4):

,


Это показывает, что на лестнице скорость людского потока снижается до 40 м/мин. Время движения по лестнице вниз (3-й участок):

4.1.10 При переходе на первый этаж происходит смешивание с потоком людей, двигающихся по первому этажу. Плотность людского потока для первого этажа:

при этом интенсивность движения составит около 8 м/мин.

4.1.11. При переходе на 4-й участок происходит слияние людских потоков, поэтому интенсивность движения определяется по формуле (2.7):

По таблице Е.2 приложения Е скорость движения равняется 40 м/мин, поэтому скорость движения по коридору первого этажа:

4.1.12 Тамбур при выходе на улицу имеет длину 5 метров, на этом участке образуется максимальная плотность людского потока поэтому согласно данным приложения скорость падает до 15 м/мин, а время движения по тамбуру составит:


4.1.13 При максимальной плотности людского потока интенсивность движения через дверной проем на улицу шириной более 1,6 м – 8,5 м/мин, время движения через него:

4.1.13 Расчетное время эвакуации рассчитывается по формуле (2.1):

4.1.14 Таким образом, расчетное время эвакуации из кабинетов предприятия «Обус» больше допустимого. Поэтому здание, в котором располагается предприятие, необходимо оборудовать системой оповещения о пожаре, средствами автоматической сигнализации.

Список использованных источников

1 Охрана труда в строительстве: Учеб. для вузов/ Н.Д. Золотницкий [и др.]. – М.: Высшая школа, 1969. – 472 с.

2 Безопасность труда в строительстве (Инженерные расчеты по дисциплине «Безопасность жизнедеятельности»): Учебное пособие/ Д.В. Коптев [и др.]. – М.: Изд-во АСВ, 2003. – 352 с.

3 Фетисов, П.А.Справочник по пожарной безопасности. – М.: Энергоиздат, 1984. – 262 с.

4 Таблица физических величин: Справочник./ И.К. Кикоин [и др.]

5 Шрайбер, Г. Огнетушащие средства. Физико-химические процессы при горении и тушении. Пер. с нем. – М.: Стройиздат, 1975. – 240 с.

6 ГОСТ 12.1.004–91.ССБТ. Пожарная безопасность. Общие требования. - Введ. с 01.07.1992. – М.: Изд-во стандартов, 1992. -78 с.

7 Дмитриченко А.С. Новый подход к расчету вынужденной эвакуации людей при пожарах / А.С. Дмитриченко, С.А. Соболевский, С.А. Татарников // Пожаровзрывобезопасность, №6. – 2002. – С. 25–32.


Приложение А

Категория помещения Характеристика веществ и материалов, находящихся (обращающихся) в помещении
1 2
А Взрывопожароопасная Горючие газы, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа. Вещества и материалы, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом в таком количестве, что расчетное избыточное давление взрыва в помещении превышает 5 кПа

Взрывопожароопасная

Горючие пыли или волокна, легковоспламеняющиеся жидкости с температурой вспышки не более 28 °С в таком количестве, что могут образовывать взрывоопасные пылевоздушные или парогазовоздушные смеси, при воспламенении которых развивается расчетное избыточное давление взрыва в помещении, превышающее 5 кПа.
В1‑В4 Пожароопасная Горючие и трудногорючие жидкости, твердые горючие и трудногорючие вещества и материалы (в том числе пыли и волокна), вещества и материалы, способные при взаимодействии с водой или друг с другом только гореть, при условии, что помещения, в которых они имеются в наличии или обращаются, не относятся к категориям А и Б.
Г Негорючие вещества и материалы в горячем, раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени; горючие газы, жидкости и твердые вещества, которые сжигаются или утилизируются в качестве топлива.
Д Негорючие вещества и материалы в холодном состоянии.

Приложение Б

Таблица Б.1 – Степень огнестойкости для различных зданий

Степень огнестойкости Конструктивные характеристики
I Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона с применением листовых и плитных негорючих материалов
II То же. В покрытиях зданий допускается применять незащищенные стальные конструкции
III Здания с несущими и ограждающими конструкциями из естественных или искусственных каменных материалов, бетона или железобетона. Для перекрытий допускается использование деревянных конструкций, защищенных штукатуркой или трудногорючими листовыми, а также плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
Ша

Здания преимущественно с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих листовых материалов с трудногорючим

утеплителем

Шб Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из цельной или клееной древесины, подвергнутой огнезащитной обработке, обеспечивающей требуемый предел распространения огня. Ограждающие конструкции – из панелей или поэлементной сборки, выполненные с применением древесины или материалов на ее основе. Древесина и другие горючие материалы ограждающих конструкций должны быть подвергнуты огнезащитной обработке или защищены от воздействия огня и высоких температур таким образом, чтобы обеспечить требуемый предел распространения огня.
IV Здания с несущими и ограждающими конструкциями из цельной или клееной древесины и других горючих или трудногорючих материалов, защищенных от воздействия огня и высоких температур штукатуркой или другими листовыми или плитными материалами. К элементам покрытий не предъявляются требования по пределам огнестойкости и пределам распространения огня, при этом элементы чердачного покрытия из древесины подвергаются огнезащитной обработке
IVa Здания преимущественно одноэтажные с каркасной конструктивной схемой. Элементы каркаса – из стальных незащищенных конструкций. Ограждающие конструкции – из стальных профилированных листов или других негорючих материалов с горючим утеплителем.
V Здания, к несущим и ограждающим конструкциям которых не предъявляются требования по пределам огнестойкости и пределам распространения огня

Приложение В

Таблица В.1 – Средняя скорость выгорания и теплота сгорания веществ и материалов

Вещества и материалы Весовая скорость Теплота сгорания
горения хЮ 3 , кДж-кг» 1
кг‑м – мин»
Бензин 61,7 41870
Ацетон 44,0 28890
Диэтиловый спирт 60,0 33500
Бензол 73,3 38520
Дизельное топливо 42,0 48870
Керосин 48,3 43540
Мазут 34,7 39770
Нефть 28,3 41870
Этиловый спирт 33,0 27200
Турбинное масло (ТП‑22) 30,0 41870
Изопропиловый спирт 31,3 30145
Изопентан 10,3 45220
Толуол 48,3 41030
Натрий металлический 17,5 10900
Древесина (бруски) 13,7% 39,3 13800
Древесина (мебель в жилых и 14,0 13800
административных зданиях 8–10%)
Бумага разрыхленная 8,0 13400
Бумага (книги, журналы) 4,2 13400
Книги на деревянных стеллажах 16,7 13400
Кинопленка триацетатная 9,0 18800
Карболитовые изделия 9,5 26900
Каучук СКС 13,0 43890
Каучук натуральный 19,0 44725
Органическое стекло 16,1 27670
Полистирол 14,4 39000
Резина 11,2 33520
Текстолит 6,7 20900
Пенополиуретан 2,8 24300
Волокно штапельное 6,7 13800
Волокно штапельное в кипах 22,5 13800
40x40x40 см
Полиэтилен 10,3 47140
Полипропилен 14,5 45670
Хлопок в тюках 190 кг х м» 2,4 16750
Хлопок разрыхленный 21,3 15700
Лен разрыхленный 21,3 15700
Хлопок+капрон (3:1) 12,5 16200

Приложение Г

Таблица Г.1 – Линейная скорость распространения пламени на поверхности материалов

Линейная скорость
Материал распространения пламени
по поверхности,
м-мин» 1
Угары текстильного производства в 10
разрыхленном состоянии
Древесина в штабелях при влажности, %:
8–12 6,7
16–18 3,8
18–20 2,7
20–30 2,0
более 30 1,7
Древесина (мебель в административных и 0,36
других зданиях)
Подвешенные ворсистые ткани 6,7–10
Текстильные изделия в закрытом складе при 0,6
загрузке. 100 кг/м 2
Бумага в рулонах в закрытом складе при 0,5
загрузке 140 кг/м
Синтетический каучук в закрытом складе при 0,7
загрузке свыше 230 кг/м
Деревянные покрытия цехов большой площади, 2,8–5,3
деревянные стены, отделанные древесно-
волокнистыми плитами
Печные ограждающие конструкции с 7,5–10
утеплителем из заливочного ППУ
Соломенные и камышитовые изделия 6,7
Ткани (холст, байка, бязь):
по горизонтали 1,3
в вертикальном направлении 30
Листовой ППУ 5,0
Резинотехнические изделия в штабелях 1,7–2
Синтетическое покрытие «Скортон» 0,07
приТ=180 °С
Торфоплиты в штабелях 1,7
Кабель АШв1х120; АПВГЭЗх35+1х25; 0,3
АВВГЗх35+1х25:

Приложение Д

Таблица Д. 1 – Время задержи начала эвакуации

Тип и характеристика здания Время задержи начала эвакуации, мин, при типах систем оповещения
W1 W2 W3 W4
Административные, торговые и производственные здания (посетители находятся в бодрствующем состоянии, знакомы с планировкой здания и процедурой эвакуации) <1 3 >4 <4
Магазины, выставки, музеи, досуговые центры и другие здания массового назначения, (посетители находятся в бодрствующем состоянии, но могут быть не знакомы с планировкой здания и процедурой эвакуации) <2 3 >6 <6
Общежития, интернаты (посетители могут находиться в состоянии сна, но знакомы с планировкой здания и процедурой эвакуации) <2 4 >5 <5
Отели и пансионаты (посетители могут находиться в состоянии сна, и быть не знакомыми с планировкой здания и процедурой эвакуации) <2 4 >6 <5
Госпитали, дома престарелых и другие тому подобные заведения, (значительное число посетителей может нуждаться в помощи) <3 5 >8 <8

Примечание: Характеристика системы оповещения

W1 – оповещение и управление эвакуацией оператором;

W2 – использование записанных заранее типовых фраз и информационных табло;

W3 – сирена пожарной сигнализации;

W4 – без оповещения.


Приложение Е

Таблица Е.1 – Площадь проекции человека

Таблица Е.2 – Зависимость скорости и интенсивности движения от плотности людского потока

Плотность потока D,

Горизонтальный путь Дверной проем Лестница вниз Лестница вверх
0,01 100 1,0 1,0 100 1,0 60 0,6
0,05 100 5,0 5,0 100 5,0 60 3,0
0,1 80 8,0 8,7 95 9,5 53 5,3
0,2 60 12,0 13,4 68 13,6 40 8,0
0,3 47 14,1 15,6 52 16,6 32 9,6
0,4 40 16,0 18,4 40 16,0 26 10,4
0,5 33 16,5 19,6 31 15,6 22 11,0
0,6 27 16,2 19,0 24 14,4 18 10,6
0,7 23 16,1 18,5 18 12,6 15 10,5
0,8 19 15,2 17,3 13 10,4 10 10,0
0,9 и более 15 13,5 8,5 10 7,2 8 9,9
Примечание. Табличное значение интенсивности движения в дверном проеме при плотности потока 0,9 и более, равное 8,5 м/мин, установлено для дверного проема шириной 1,6 м и более.