Организации работы для поддержания соответствующих микроклиматических параметров. Мероприятия, обеспечивающие улучшение микроклимата производственных помещений. Отопопление, вентиляция, кондиционирование воздуха. Отопление помещений, кондиционирования и а

Требования состояния воздуха рабочей зоны производственных помещений может быть обеспечено выполнением определенных мероприятий, к основным из них относятся:

1. Механизация и автоматизация производственных процессов, дистанционное управление ими. Автоматизация процессов, сопровождающихся выделением вредных веществ, повышает производительность труда и улучшает условия труда, поскольку рабочие выводятся из опасных зон.

2. Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону.

Это достигается:

Заменой токсичных веществ нетоксичными;

Переходом с твердого и жидкого топлива на газообразное;

Электрический высокочастотный нагрев и др.

Защита от источников тепловых излучений.

Интенсивность облучения рабочих в ряде случаев составляет значительную величину (до 3000 – 6000 Вт/м² и более). В этих случаях лучистый поток теплоты становится основным вредным производственным фактором.

Способы защиты от лучистого потока теплоты и высоких температур следующие:

Теплоизоляция нагретых поверхностей;

Экранирование тепловых излучений;

Применение воздушного душирования воздушной среды;

Организация рационального отдыха в период работы.

3. Устройство вентиляции и отопления.

4. Применение средств индивидуальной защиты.

МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ.

Существенное влияние на состояние организма работника, его работоспособность оказывает микроклимат (метеорологические условия) в производственных помещениях, под которым понимают климат внутренней среды этих помещений, который определяется действующей на организм человека совокупностью температуры, влажности, скорости движения воздуха, давления и теплового излучения от нагретых поверхностей.

В отличие от микроклимата жилых и общественных сооружений микроклимат производственных помещений характеризуется значительной динамичностью и зависит от колебаний внешних метеорологических условий и времени года, теплофизических особенностей технологического процесса, условий отопления и вентиляции.

Микроклимат производственных помещений, в основном, влияет на тепловое состояние организма человека и его теплообмен с окружающей средой.

1. ТЕПЛООБМЕН ЧЕЛОВЕКА С ОКРУЖАЮЩЕЙ СРЕДОЙ.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Для того чтобы физиологические процессы в организме человека происходили нормально, тепло, которое выделяется организмом человека, должно полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреванию или к переохлаждению организма человека и, в конце потере работоспособности, потере сознания и к тепловой смерти Величина тепловыделения организмом человека зависит от степени физической нагрузки, определенных климатических условий и составляет от 85 (в состоянии покоя) до 500 Дж/с (тяжелая работа).

Нормальное тепловое самочувствие имеет место, если тепловыделение (Q тв) организма человека полностью воспринимаются окружающей средой (Q тн) то есть если имеет место тепловой баланс (Q тв)=(Q тн), когда температура внутренних органов остается постоянной в пределах 36,6 °С.

Организм человека способен поддерживать устойчивую температуру тела при достаточно широких колебаниях параметров окружающей среды. Так, тело человека сохраняет температуру близкую 36,6 0Спри колебаниях окружающей температуры от -40 °С до +40 °С. При этом температура отдельных участков кожи и внутренних органов может быть от 24 °С до 37,1 °С.

Наиболее интенсивные обменные процессы происходят в печени, ее температура - 38,0...38,5 °С. Существует суточный биоритм температур кожи: максимальная (37,0...37,1 °С) в 16.00...19.00, минимальная (36,0. .36,2 °С) в 2.00...4.00 по местному времени.

Уравнение теплового баланса окружающей среды человека впервые было проанализировано в 1884 году профессором Флавицким И.И. Теплообмен

между человеком и окружающей средой осуществляется конвекцией вследствие обтекания тела воздухом (g k),теплопроводностью через одежду (g), излучением на окружающие поверхности (g) и в процессе тепломассообмена (Q TM) Рй выпаривании влаги, которая выводится на поверхность потовыми железами (g п)и при дыхании (g д):

Q TH = g + g + g + gп + gд, (1)

Конвективный теплообмен определяется по закону Ньютона:

g= α K F e (t пов -t нс), (2)

где t пов - температура поверхности тела человека (зимой -27,5 °С, летом - 31 °С);

t нс - температура окружающей среды,

F e , - эффективная поверхность тела человека (50...80% геометрической внешней поверхности тела человека). Для практических расчетов она принимается равной 1,8 м 2 ;

α K - коэффициент теплоотдачи конвекцией, α K =4,06 Вт/(м 2 град).

Величина и направление конвективного теплообмена человека с окружающей средой определяется, преимущественно, температурой окружающей среды, барометрическим давлением, скоростью движения и влагосодержанием воздуха.

Уравнение Фурье, которое описывает теплопроводность в одномерном теплопроводном поле, можно записать в виде:

где α 0 - коэффициент теплопроводности тканей одежды человека, Вт/град;

Теплообмен излучением происходит за счет электромагнитных волн между телами, разделенными лучепрозрачной средой. Тепловая энергия, превращаясь на поверхности горячего тела в лучистую, передается на холодную поверхность, где снова превращается в тепловую. Лучистый поток тем больше, чем меньше температура поверхностей, которые окружают человека и может быть определена с помощью обобщенного закона Стефана-Больцмана:

(4)

где: T 1 - средняя температура поверхности тела и одежды человека, К;

T 2 - средняя температура окружающих поверхностей, К;

γ 1-2 - коэффициент излучения, зависящий от расположения и размеров поверхностей F 1 и F 2 и указывающий на частицу лучистого тепла, которая приходится на поверхность F 2 , от всего потока, который излучается поверхностью F 1 ;

Спр = С 1 х С 2 /С 0 - приведенный коэффициент излучения, Вт/(м 2 К 4);

Со - коэффициент излучения абсолютно черного тела.

Количество тепла, которое отдается человеком в окружающую среду при испарении влаги, которая выводится на поверхность кожи потовыми железами, определяется по формуле:

где: G П - количество влаги, которая выделяется и испаряется, кг/с;

г - скрытая теплота выпаривания влаги, которая выделяется, Дж/кг.

Количество тепла, которое отдается в окружающую среду с поверхности тела при испарении пота, зависит не только от температуры воздуха и интенсивности работы, выполняемой человеком, но и от скорости движения окружающего воздуха и его относительной влажности.

Количество тепла, которое расходуется на нагревание вдыхаемого воздуха, можно определить за уравнением:

где: V ЛВ - легочная вентиляция, м 3 /с;

ρ ВД - плотность влажного вдыхаемого, кг/м 3 ;

Ср - удельная теплоемкость вдыхаемого, Дж/(кг/град);

t вид - температура выдыхаемого воздуха, °С;

t вд - температура вдыхаемого, °С.

Легочная вентиляция - это объем воздуха, который вдыхается человеком в единицу времени. Она определяется как произведение объема воздуха, который вдыхается за один вдох, на число циклов дыхания в секунду.

Количество теплоты, которое выделяется человеком с выдыхаемым воздухом, зависит от физической нагрузки, влажности и температуры окружающего воздуха.

В целом тепловое самочувствие человека зависит от интенсивности физической нагрузки организма, температуры окружающих предметов и параметров микроклимата (температуры, скорости движения и относительной влажности воздуха, барометрического давления, интенсивности излучения от нагретых поверхностей).

1. ВЛИЯНИЕ ПАРАМЕТРОВ МИКРОКЛИМАТА НА САМОЧУВСТВИЕ

ЧЕЛОВЕКА.

Параметры микроклимата оказывают непосредственное влияние на самочувствие человека и его работоспособность. Снижение температуры для всех других условий приводит к возрастанию теплоотдачи путем конвекции и излучения и может обусловить переохлаждение организма.

Повышение скорости движения воздуха ухудшает самочувствие, поскольку оказывает содействие усилению конвективного теплообмена и процесса теплоотдачи при испарении пота.

При повышении температуры воздуха имеют место обратные явления. Установлено, что при температуре воздуха свыше 16 °С работоспособность человека начинает падать. При такой температуре и влажности воздуха практически все тепло, которое выделяется, отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожи.

Недостаточная влажность приводит к интенсивному испарению влаги со слизистых оболочек, их пересыханию и растрескиванию, загрязнению болезнетворными микробами.

Вода и соли, которые выносятся из организма с потом, должны возмещаться, поскольку их потеря приводит к сгущению крови и нарушению деятельности сердечно-сосудистой системы.

Обезвоживание организма на 6% вызовет нарушение умственной деятельности, снижение остроты зрения. Обезвоживание на 15...20 % приводит к смертельному исходу.

Потеря соли лишает кровь способности удерживать воду и вызовет нарушение деятельности сердечно-сосудистой системы. Из-за высокой температуры воздуха и при дефиците воды в организме усиленно расходуются углеводы, жиры, разрушаются белки.

Продолжительное влияние высокой температуры в сочетании со значительной влажностью воздуха может привести к накоплению теплоты в организме и к гипертермии.

Гипертермия - это состояние человека, при котором температура тела поднимается до 38...40 °С. При гипертермии, и как следствие при тепловом ударе, наблюдается головная боль, умопомрачение, общая слабость, искажение цветного восприятия, сухость во рту, дурнота, блевотина, потовыделение. Пульс и частота дыхания ускоряются, в крови возрастает содержимое остаточного азота и молочной кислоты. Наблюдается бледность, посинение кожи, расширение зрачков, временами возникают судороги, потеря сознания.

Из-за пониженной температуры, значительной скорости движения и влажности воздуха возникает переохлаждение организма (гипотермия ). На начальном этапе влияния холода наблюдается снижение частоты дыхания, увеличение объема вдоха. Из-за продолжительного влияния холода дыхание становится неритмичным, частота и объем вдоха возрастают, изменяется углеводный обмен. Появляется мышечное дрожание, при котором внешняя работа не выполняется, и вся энергия дрожания превращается в теплоту. Это позволяет на протяжении некоторого времени задерживать понижение температуры внутренних органов. Следствием действия низких температур являются простудные заболевания.

Параметры микроклимата служат причиной существенного влияния на производительность труда и на травматизм.

Влияние температуры воздуха на среднюю производительность труда показано на графике (рис.2 1).

Рис. 1. Влияние температуры воздух на производительность труда

4. Мероприятия по нормализации параметров микроклимата.

На сегодняшний день основными нормативными документами, определяющими параметры микроклимата производственных помещений, являются ГОСТ 12.1.005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ДСН 3.3.042 – 99. Санітарні норми мікроклімату виробничих приміщень. Київ, 1999 р.

Здесь указанные параметры нормируются для рабочей зоны – просторной, ограниченной по высоте 2 м над уровнем пола или площадки, на которой находятся рабочие места постоянного или непостоянного (временного) пребывания работников.

В основу принципа нормирования параметров микроклимата положена дифференциальная оценка оптимальных и допустимых метеорологических условий в рабочей зоне в зависимости от тепловой характеристики производственного помещения, категории работ по степени тяжести и периода года.

Оптимальными (комфортными) считаются такие условия труда, для которых имеет место наибольшая работоспособность и хорошее самочувствие. Допустимые микроклиматические условия предусматривают возможность напряженной работы механизма терморегуляции, которая не выходит за пределы возможностей организма, а также дискомфортные ощущения.

Оптимальные и допустимые параметры микроклимата в рабочей зоне производственных помещений для разных категорий тяжести работ в теплый и холодный периоды года, приведены в таблице 2.2. ГОСТ 12.1.005-88 ССБТ.

Создание оптимальных метеорологических условий труда в производственных помещениях является сложной задачей.

Для обеспечения нормативных параметров микроклимата в производственных помещениях проводятся технологические, технические, санитарно-технические и организационные мероприятия.

Наиболее радикальными методами управления микроклиматом являются:

Максимально возможная механизация и автоматизация тяжелых и трудоемких работ, выполнение которых сопровождается избыточным теплообразованием в организме человека;

Дистанционное управление теплоизлучающими процессами и аппаратами, исключающими необходимость пребывания работающих в зоне инфракрасного облучения;

Рациональное размещение и теплоизоляция оборудования, коммуникаций и других источников, излучающих тепло в рабочую зону.

Среди организационных мероприятий следует отметить такие как:

Рациональные объемно-планировочные и конструктивные решения производственных зданий;

Рациональное размещение оборудования;

Организация рационального водно-солевого режима работающих с целью профилактики перегрева организма. Для этого к питьевой воде добавляют небольшое количество (0,2 -- 0,5%) поваренной соли и насыщают ее диоксидом углерода (сатурируют).

Устройство в горячих цехах специально оборудованных комнат, кабин или мест для кратковременного отдыха, в которые подается очищенный и умеренно охлажденный воздух;

Для предупреждения переохлаждения и простудных заболеваний работающих у входа в цех устраивают тамбуры или создают воздушные тепловые завесы, которые направляют поток холодного наружного воздуха в верхнюю зону помещения.

56 Отопление помещений, кондиционирования и аэроинизации воздуха

Системы отопления, вентиляции и кондиционирования предназначены для обеспечения нормируемых метеорологических условий и чистоты воздуха на рабочих местах.

Отопление. Отопление проектируется для обеспечения в помещениях расчетной температуры воздуха, которая принимается в зависимости от периода года. Для холодного периода года расчет отопления производится с учетом обеспечения минимальной из допустимых температур. Система отопления – это комплекс конструктивных элементов, предназначенных для получения, переноса и подачи необходимого расчетного количества тепла в обогреваемые помещения. К местным системам относят такие, в которых генератор тепла, нагревательные приборы и теплопроводы находятся непосредственно в отапливаемом помещении и конструктивно объединены в одной установке. К системам центрального отопления относятся такие, в которых генераторы тепла расположены вне отапливаемых помещений. В этом случае генератор тепла и нагревательные приборы отдалены друг от друга. Центральные системы отопления представлены прежде всего водяными, паровыми, воздушными и комбинированными.

Вентиляция. По способу организации воздухообмена вентиляция может быть общеобменной , местной и комбинированной. Общеобменную вентиляцию, при которой смена воздуха происходит во всем объеме помещения, наиболее часто применяют в тех случаях, когда вредные вещества выделяются в небольших количествах и равномерно по всему помещению. Местная вентиляция предназначена для отсоса вредных выделений (газы, пары, пыль, избыточное тепло) в местах их образования и удаления из помещения. Комбинированная система предусматривает одновременную работу местной и общеобменной вентиляции. В зависимости от назначения вентиляции - подача (приток) воздуха в помещение или удаление (вытяжка) его из помещения, вентиляцию называют приточной и вытяжной. При одновременной подаче и удалении воздуха вентиляция называется приточно-вытяжной.

В соответствии с ГОСТ 12.4.021 во всех помещениях должна быть предусмотрена естественная вентиляция, которая может иметь неорганизованный и организованный характер. При неорганизованной вентиляции воздух подается и удаляется из помещения через неплотности и поры наружных ограждений зданий (инфильтрация), а также через форточки, окна, открываемые без всякой системы. Естественная вентиляция считается организованной, если направления воздушных потоков и воздухообмен регулируются с помощью специальных устройств. Систему организованного естественного воздухообмена называют аэрацией.

Обычные системы вентиляции не способны поддерживать сразу все параметры воздуха в пределах, обеспечивающих комфортные условия в зонах пребывания людей. Эту задачу выполняет кондиционирование , которое является наиболее совершенным видом механической вентиляции и автоматически поддерживает микроклимат на рабочем месте независимо от наружных условий.

Кондиционирование воздуха - это автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, главным образом, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей культуры.

Различают системы комфортного кондиционирования, обеспечивающие в помещении постоянные комфортные условия для человека, и системы технологического кондиционирования, предназначенные для поддержания в производственном помещении требуемых технологическим процессом условий.

К эксплуатации допускаются вентиляционные системы, полностью прошедшие предпусковые испытания и имеющие инструкции по эксплуатации, паспорта, журналы ремонта и эксплуатации. В инструкции по эксплуатации вентиляционных систем должны быть отражены вопросы взрыво- и пожарной безопасности.

Аэроионизация и требования к аэроионному составу воздуха

Искусственная аэроионизация воздуха производится специальными ионизаторами, например, люстрами Чижевского, которые могут обеспечить в ограниченном объеме заданную концентрацию ионов определенной полярности. Аэроионы повышают умственную и физическую работоспособность, снимают стресс, укрепляют нервную систему, повышают сопротивляемость организма к инфекционным заболеваниям.

Аэроионы характеризуются зарядом частиц и их подвижностью. Различают отрицательные и положительные аэроионы.

Второй важной характеристикой аэроионов является их подвижность - коэффициент К, определяющий перемещение иона в электрическом поле, м 2 /В с. По подвижности весь спектр ионов условно подразделяется на пять диапазонов:

Легкие – с подвижностью К = 1,0 и более;

Средние – с подвижностью 1,0 < К > 0,01;

Тяжелые с подвижностью 0,01 < К> 0,001;

Ионы Ланжевена – с подвижностью 0,001 < К>0,0002;

Сверхтяжелые – с подвижностью К <0,0002.

Санитарные правила регламентируют содержание в воздушной среде производственных и общественных зданий легких аэроионов с подвижностью К, равному или более 1,0 м 2 /Вс.

Для нормализации аэроионного состава воздуха в помещениях используют приточно-вытяжную вентиляцию, групповые и индивидуальные ионизаторы, устройства автоматического регулирования ионного режима воздушной среды.

Контроль уровня аэроионизации в воздухе производственных и общественных помещений, в которых находятся источники аэроионов, системы кондиционирования, должен проводиться в случаях:

При внедрении новых технологических процессов, производственного оборудования, которые могут изменить ионный состав воздушной среды;

При внедрении системы кондиционирования или технических средств нормализации аэроионного состава;

При организации новых рабочих мест в помещениях с системами аэроионизации воздушной среды.

При текущем санитарном надзоре измерения содержания аэроионов производятся не реже одного раза в год.

Нормируемыми параметрами микроклимата являются: температура воздуха рабочей зоны, скорость движения воздуха, влажность, инфракрасное излучение, - эмпирический интегральный показатель (выраженный в °С), отражающий сочетанное влияние температуры воздуха, скорости его движения, влажности и теплового облучения на теплообмен человека с окружающей средой.

Таким образом, мероприятия по обеспечению оптимального и допустимого микроклимата будут касаться четырех его основных параметров: температура воздуха рабочей зоны, скорость движения воздуха, влажность, инфракрасное излучение. При разработке мероприятий необходимо учитывать сочетанное действие параметров микроклимата и сопутствующих факторов. Оно заключается в следующем:

  • высокая температура в сочетании с высокой скоростью движения воздуха обеспечивает температурный комфорт;
  • низкая температура и высокая скорость движения воздуха вызывают ощущение холода;
  • высокая физическая активность и низкая температура способствуют температурному комфорту;
  • высокая физическая активность и большое количество излучаемого тепла создают ощущение жары.

Комфортная с точки зрения микроклимата среда является идеальной для работы. При этом помимо увеличения эффективности работы, уменьшается вероятность совершения ошибок, ведущих к серьезным последствиям или несчастному случаю.

1. Температура и скорость движения воздуха, влажность

Нормализация микроклимата производственных помещений осуществляется путем проведения следующих мероприятий (см. ниже).

  • Оборудование зданий и помещений системами обогрева. К системам обогрева относят:

а) Радиаторы и конвекторы.

В качестве нагревательных приборов в отопительных системах конвекционного типа обычно используются чугунные радиаторы или конвекторы, выполненные из стали либо цветных металлов. Воздух обтекает радиатор снизу и спереди и, нагреваясь, поднимается вверх, проходит вдоль радиатора и выходит сверху нагретый и с заметной скоростью. Конвекторы отличаются от радиаторов тем, что имеют гораздо меньшие поверхности нагрева и располагаются в нижней части специального кожуха, который нужен для создания эффекта «дымохода», чтобы организовать движение воздуха мимо нагревательной поверхности и затем распределить поток нагретого воздуха по объему помещения. Характеристики кожуха конвектора зависят от размеров и положения отверстий для входа воздуха, а также от выбранного способа обдува нагревательной поверхности.

Рисунок 1

б) Системы с тепловентиляторами.

К системам конвективного нагрева относятся также применяемые в производственных помещениях системы с трубчатым калорифером, через который вентилятором с большой скоростью продувается воздух комнатной температуры. В условиях вынужденной конвекции в такой системе теплоотдача от нагревательной поверхности более интенсивна, чем для обычного конвектора или радиатора, поэтому эффективность обогрева существенно выше по сравнению с другими системами. Тепловентиляторы обычно выполняются в виде блока, который устанавливается у потолка в центре обогреваемого помещения. Кожух тепловентилятора имеет жалюзи, которые позволяют изменять направление потока нагретого воздуха, чтобы обеспечить лучшее перемешивание воздуха в помещении и предотвратить образование нежелательных застойных зон с градиентом температуры. Трубчатые калориферы с развитой поверхностью нагрева иногда используются в подающих каналах воздушных отопительных систем вместо непосредственного воздушного нагрева. Эффективность работы тепловентилятора зависит от многих факторов, в частности, от его расположения в помещении и направлений воз-душного потока на входе и выходе.

Рисунок 2

в) Воздушное отопление.

Этот термин относится к системам отопления, в которых подогретый воздух подается по проложенным в здании специальным каналам в отапливаемые помещения. Если комнатный воздух возвращается обратно для повторного нагрева, система называется рециркуляционной; в тех случаях, когда возврат воздуха не предусмотрен и в помещение поступает только подогретый наружный воздух, система называется вентиляционной. Последняя система используется только в тех помещениях, где рециркуляция воздуха недопустима. Воздушное отопление может быть естественным или принудительным. В системах с естественной циркуляцией перемещение воздуха происходит за счет разности температур и плотностей воздуха, поэтому важным требованием при проектировании воздуховодов является незначительность потерь на трение, чтобы обеспечить необходимую интенсивность циркуляции воздуха. В системах с принудительной циркуляцией используется внешний источник энергии для обеспечения требуемой интенсивности циркуляции. Поскольку скорости перемещения воздуха в системах с принудительной циркуляцией значительно выше, проблема перемешивания воздуха упрощается, однако возникает проблема шума в воздуховодах и распределительных решетках.

г) Системы лучистого обогрева.

Лучистый обогрев - это вид обогрева, основанный на принципе теплового излучения, которое представляет собой переход тепла от тела с более высокой температурой к телу с более низкой температурой. В установках лучистого обогрева вследствие направленного излучения в нижнюю зону помещения и передачи тепла непосредственно обогреваемым поверхностям, а не воздуху, отсутствует необходимость приращения мощности установки в расчете на высоту помещения. Отсутствие застоя теплого воздуха в районе кровли способствует уменьшению теплопотерь помещения и созданию более комфортных условий для помещения. Кроме этого, в помещениях, отапливаемых приборами лучистого отопления, температура воздуха может быть немного ниже традиционно расчетной, в то время как поверхности стен и оборудования имеют температуру выше, что в целом дает ощущение комфорта для людей в помещении.

д) Системы кабельного обогрева.

Они представляют собой нагревательные (греющие) кабели и нагревательные ткани. Кабельный обогрев позволяет эффективно и экономично решать многие проблемы, связанные с поддержанием температур, разогревом, антиобледенением. Системы кабельного обогрева широко используются при создании «теплых» полов, а также при решении нестандартных задач обогрева;

Рисунок 3

  • Установка стационарных и мобильных пунктов обогрева.
  • Установка и ремонт систем вентиляции и кондиционирования воздуха. Системы кондиционирования воздуха в производственных помещениях осуществляют в основном с применением одного из двух типов сплит-систем: обычных (настенных, напольных, кассетных ), которые размещаются непосредственно в каждом помещении, и канальных, требующих для подачи охлажденного воздуха в помещения наличия системы воздуховодов.

Рисунок 4

  • Защита фасада здания (кроме северного) защитными устройствами от солнца. К ним относятся шторы, жалюзи, козырьки, навесы . Они более эффективны, когда расположены с внешней стороны фасада (снаружи). Также эффективной защитой от солнечных лучей является использование солнцезащитных стекол.
  • Использование увлажнителей воздуха.
  • Воздушное душирование рабочих мест. Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

К организационно-техническим мероприятиям следует отнести следующие (см. ниже).

  • Рациональное размещение оборудования. Основные источники тепла располагают непосредственно под аэрационным фонарем, у наружных стен здания и в один ряд, чтобы тепловые потоки от них не перекрещивались на рабочих местах.
  • Проведение работ с использованием дистанционного управления и дистанционного наблюдения (защита «расстоянием»).
  • Внедрение рациональных технологических процессов и оборудования (замена горячего способа обработки металла холодным, пламенного нагрева - индукционным и т.п.).
  • использование тепловой изоляции оборудования различными видами теплоизоляционных материалов;
  • использование теплозащитных экранов;
  • использование водяных завес, которое представляет собой мелкодисперсное распыление пыли.

К организационным относятся мероприятия по защите «временем» (разработка оптимального режима труда и отдыха работающих). Для обеспечения средне-сменного термического напряжения работающих на допустимом уровне суммарная продолжительность их деятельности в условиях нагревающего микроклимата в течение рабочей смены не должна превышать 7, 5, 3 и 1 часа соответственно классам условий труда по степени вредности.

2. Защита от инфракрасного излучения

Для защиты от теплового излучения применяются средства коллективной и индивидуальной защиты. Основными методами коллективной защиты являются: * теплоизоляция рабочих поверхностей источников излучения теплоты. Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне. Для теплоизоляции применяют материалы с низкой теплопроводностью. Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной. Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики. Оберточная изоляция изготавливается из волокнистых материалов - асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов. Засыпная изоляция (например, керамзит) в основном используется при про-кладке трубопроводов в каналах и коробах. Штучная изоляция выполняется формованными изделиями - кирпичом, матами, плитами и используется для упрощения изоляционных работ. Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои - из мастичных и оберточных материалов;

  • экранирование источников или рабочих мест. Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим по-крытием. В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий - алюминиевую краску. Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты. Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30…35°С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3…3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет, используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы. Прозрачные экраны изготавливают из бесцветных или окрашенных стекол - силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.;

  • воздушное душирование рабочих мест;
  • использование водяных завес;

Рисунок 5

  • использование устройств кондиционирования. Кондиционирование воздуха - создание и автоматическое поддержание в закрытых помещениях температуры, влажности, чистоты, скорости движения воздуха в заданных пределах. Его применяют для достижения наиболее комфортных санитарно-гигиенических условий в рабочей зоне или в производственно-технологических целях для поддержания требуемых параметров микроклимата с помощью кондиционеров.

Кондиционеры бывают центральные (на несколько помещений) и местные (на одно помещение), производственные и бытовые;

  • использование вентиляционных систем и установок. К организационным относятся мероприятия по защите «временем». Во избежание чрезмерного (опасного) общего перегревания и локального повреждения (ожог) человека должна быть регламентирована продолжительность периодов непрерывного инфракрасного облучения и пауз между ними.

Рисунок 6

  • использование средств индивидуальной защиты. К ним относятся:

    • одежда специальная для защиты от повышенных температур (перегрева, брызг и искр расплавленного металла) В спецодежде этого класса используют материалы, способные определенное время удерживать брызги и искры металла (парусина с огнезащитной пропиткой, суконная ткань). Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани с металлизированной нитью.
    • средства защиты от повышенных температур (рукавицы, краги, перчатки изготовленные из сукна или спилка)
    • щитки защитные лицевые с металлизированным теплоотражающим покрытием.

Учитывая большую важность метеорологических факторов для работающих, санитарными правилами регламентируются показатели микроклимата для рабочих зон производственных помещений, а также санитарно-бытовых помещений.

Микроклимат производственных помещений – это метеорологические условия внутренней среды этих помещений, которые определяются действующими на организм человека сочетаниями температуры, влажности, скорости движения воздуха и теплового излучения.

Рабочая зона – пространство, ограниченное по высоте 2 м над уровнем пола или площадки, на которых находятся места постоянного (временного) пребывания работающих (ГОСТ 12.1.005).

Оптимальные микроклиматические условия – сочетания количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия – сочетания количественных показателей микроклимата, которые при длительном и систематическом воздействии на человека могут вызвать переходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающиеся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, но могут наблюдаться дискомфортные теплоощущения, ухудшение самочувствия и снижение работоспособности.

Допустимые параметры микроклимата в рабочей зоне производственных помещений приведены в табл. 2.

Параметры микроклимата устанавливаются на два периода года - холодный и теплый.

Холодный - период года, характеризуется среднесуточной температурой наружного воздуха, равной +10 0 С и ниже. Теплый – период года со среднесуточной температурой наружного воздуха выше +10 0 С

Оптимальные параметры микроклимата необходимо соблюдать на рабочих местах производственных помещений, в которых выполняются работы операторского типа, связанные с нервно-эмоциональным напряжением (в кабинах, на пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях при выполнении работ аналогичного характера (температура – 22 - 24 0 С, относительная влажность – 60 – 40%, скорость движения воздуха - не более 0,1 м/с.).

Существенное значение для нормирования параметров микроклимата в производственных помещениях имеет наличие явного тепла , которое представляет тепло, поступающее от оборудования, отопительных приборов, нагретых материалов, людей и других источников тепла, в результате инсоляции и воздействующее на температуру воздуха в этом помещении.

Согласно ГОСТ 12.1.005, производственные помещения по избыткам явного тепла условно подразделяются на две группы:

Помещения с незначительным избытком явного тепла (£ 23 Дж/м 3 ×с);

· -помещения со значительным избытком явного тепла (> 23 Дж/м 3 ×с), которые относят к категории «горячих цехов».

В соответствии с ГОСТ 12.1.005 и СанПиН II-13-94, интенсивность теплового облучения от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 Вт/м 2 при облучении 50 % поверхности тела и более; 70 Вт/м 2 – при величине облучаемой поверхности от 25 до 50 % и 100 Вт/м 2 – при облучении не более 25 % поверхности тела

Если в производственных помещениях невозможно обеспечить допустимые нормативные величины показателей микроклимата из-за технологических требований, технической недостижимости или экономически обоснованной нецелесообразности, то необходимо обеспечить защиту работающих от возможного перегревания или охлаждения организма. Для этого можно использовать системы местного кондиционирования воздуха, воздушное душирование рабочих мест, помещения для отдыха и обогревания с оптимальными параметрами микроклимата, спецодежду и другие средства индивидуальной защиты, регламентацию труда и отдыха и т.п.).

Контроль параметров микроклимата

Измерения показателей микроклимата проводятся не менее трех раз в течение одного дня в начале, середине и конце рабочей смены.

Температура и относительная влажность воздуха измеряется аспирационными психрометрами типа МВ-4М или М-34.

Скорость движения воздуха измеряется крыльчатыми анемометрами АСО-3 типа Б, если скорость лежит в пределах от 1 до 10 м/с или чашечными , которые позволяют измерить скорость движения воздуха от 1до 30 м/с. Скорость движения воздуха менее 0,3 м/с, особенно при наличии разнонаправленных потоков, можно измерять цилиндрическими или шаровыми кататермометрами. Они позволяют определять диапазон скоростей воздуха от 0,1 до 1,5 м/с, обеспечивая при этом достаточную для практических целей точность измерений.

Тепловое облучение измеряется различными приборами типа радиометров, актинометров, болометров, спектрорадиометров (РОТС-11, ДОИ-1, СРП-86).

Температуру, относительную влажность и скорость движения воздуха измеряют на высоте 1,0 м от пола или рабочей площадки при работах, выполняемых сидя, и на высоте 1,5 м – при выполнении работ стоя.

Интенсивность теплового излучения на постоянных и непостоянных рабочих местах необходимо определять в направлении максимума силы теплового излучения от каждого источника, располагая приемник прибора перпендикулярно падающему потоку на высоте 0,5; 1,0 и 1,7 м.

Измерения должны проводиться метрологически аттестованными приборами. Диапазон измерений и допустимая погрешность измерительных приборов должны соответствовать требованиям действующих нормативных документов.

Методы обеспечения нормативных параметров микроклимата

Создание оптимальных метеорологических условий труда в производственных помещениях является сложной задачей.

Для обеспечения нормативных параметров микроклимата в производственных помещениях проводятся технологические, технические, санитарно-технические и организационные мероприятия.

Наиболее радикальными методами управления микроклиматом являются:

Максимально возможная механизация и автоматизация тяжелых и трудоемких работ, выполнение которых сопровождается избыточным теплообразованием в организме человека;

Дистанционное управление теплоизлучающими процессами и аппаратами, исключающими необходимость пребывания работающих в зоне инфракрасного облучения;

Рациональное размещение и теплоизоляция оборудования, коммуникаций и других источников, излучающих тепло в рабочую зону.

Среди организационных мероприятий следует отметить такие как:

Рациональные объемно-планировочные и конструктивные решения производственных зданий;

Рациональное размещение оборудования;

· - организация рационального водно-солевого режима работающих с целью профилактики перегрева организма. Для этого к питьевой воде добавляют небольшое количество (0,2 -- 0,5%) поваренной соли и насыщают ее диоксидом углерода (сатурируют).

Устройство в горячих цехах специально оборудованных комнат, кабин или мест для кратковременного отдыха, в которые подается очищенный и умеренно охлажденный воздух;

· - для предупреждения переохлаждения и простудных заболеваний работающих у входа в цех устраивают тамбуры или создают воздушные тепловые завесы, которые направляют поток холодного наружного воздуха в верхнюю зону помещения.

Требования к системам отопления, вентиляции и кондиционирования воздуха в производственных помещениях

Системы отопления, вентиляции и кондиционирования воздуха предназначены для обеспечения нормируемых метеорологических условий и чистоты воздуха на рабочих местах.

Общие требования к системам вентиляции, кондиционирования воздуха и воздушного отопления (далее - вентиляционные системы) производственных, складских, вспомогательных и общественных зданий и сооружений определены ГОСТ 12.4.021 "ССБТ. Системы вентиляционные. Общие требования " (далее - ГОСТ 12.4.021).

Требования к проектированию систем отопления, вентиляции и кондиционирования воздуха в помещениях зданий и сооружений на территории Республики Беларусь установлены СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование» с изменениями, утвержденными Министерством архитектуры и строительства Республики Беларусь.

Отопление. Отопление проектируется для обеспечения в помещениях расчетной температуры воздуха, которая принимается в зависимости от периода года. Для холодного периода года расчет отопления производится с учетом обеспечения минимальной из допустимых температур. В холодный период года в общественных, административно-бытовых и производственных помещениях отапливаемых зданий, когда они не используются, и в нерабочее время следует принимать температуру воздуха ниже нормируемой, но не ниже 5 0 С.

На постоянных рабочих местах в помещениях пультов управления технологическими процессами необходимо принимать расчетную температуру воздуха 22 0 С и относительную влажность не более 60% в течение всего года.

Отопление производственных помещений, в которых на одного работающего приходится более 50м 2 площади пола, следует проектировать из расчета обеспечения расчетной температуры воздуха на постоянных рабочих местах и более низкой температуры вне рабочих мест.

Для производственного отопления используются специальные системы. Система отопления – это комплекс конструктивных элементов, предназначенных для получения, переноса и подачи необходимого расчетного количества тепла в обогреваемые помещения.

К местным системам относят такие, в которых генератор тепла, нагревательные приборы и теплопроводы находятся непосредственно в отапливаемом помещении и конструктивно объединены в одной установке.

К системам центрального отопления относятся такие, в которых генераторы тепла расположены вне отапливаемых помещений. В этом случае генератор тепла и нагревательные приборы отдалены друг от друга.

Центральные системы отопления представлены прежде всего водяными, паровыми, воздушными и комбинированными.

Водяное отопление обычно используют в жилых, общественных, административно-бытовых, производственных и других помещениях. Основным недостатком системы является возможность ее замерзания в зимнее время, а также медленный нагрев больших помещений после продолжительного перерыва в работе. Не допускается использовать системы водяного и парового отопления в помещениях, в которых хранятся или применяются вещества, образующие при контакте с водой или водяным паром взрывоопасные смеси или вещества, способные к самовозгоранию или взрыву при взаимодействии с водой.

В паровом отоплении теплоносителем является водяной пар (влажный, насыщенный). В зависимости от рабочего давления оно делится на системы низкого, высокого давления и вакуум-паровые. По устройству паровые системы отопления не отличаются от водяных.

Паровое отопление имеет ряд существенных недостатков по сравнению с водяным, например, трудно регулировать подачу пара в отопительную систему, что приводит к резким колебаниям температуры в отапливаемых помещениях, наличие опасности возникновения пожаров и ожогов об нагревательные приборы и вероятности резкого снижения относительной влажности воздуха за счет его перегрева.

Воздушное отопление по способу подачи теплого воздуха подразделяется на центральное – с подачей нагретого воздуха от единого теплогенератора и местное – с подачей теплого воздуха местными отопительными агрегатами. Воздушное отопление проектируют преимущественно в производственных помещениях всех категорий с выделением и без выделения пыли. В производственных помещениях категорий температура воздуха на выходе из воздухораспределителей должна быть не менее чем на 20 0 ниже температуры самовоспламенения газов, паров и пыли, выделяющихся в этих помещениях

Вентиляция. По способу организации воздухообмена вентиляция может быть общеобменной, местной и комбинированной.

Общеобменную вентиляцию, при которой смена воздуха происходит во всем объеме помещения, наиболее часто применяют в тех случаях, когда вредные вещества выделяются в небольших количествах и равномерно по всему помещению.

Местная вентиляция предназначена для отсоса вредных выделений (газы, пары, пыль, избыточное тепло) в местах их образования и удаления из помещения.

Комбинированная система предусматривает одновременную работу местной и общеобменной вентиляции.

В зависимости от способа перемещения воздуха вентиляция бывает естественной и механической. При естественной вентиляции воздух перемещается под влиянием есте­ственных факторов: теплового напора или действия ветра. При механической вентиляции воздух перемещается с помощью вентиляторов, эжекторов и др. Сочетание естественной и искусственной вентиляции образует смешанную систему вентиляции.

В зависимости от назначения вентиляции - подача (приток) воздуха в помещение или удаление (вытяжка) его из помещения, вентиляцию называют приточной и вытяжной. При одновременной подаче и удалении воздуха вентиляция называется приточно-вытяжной.

В соответствии с ГОСТ 12.4.021 во всех помещениях должна быть предусмотрена естественная вентиляция, которая может иметь неорганизованный и организованный характер. При неорганизованной вентиляции воздух подается и удаляется из помещения через неплотности и поры наружных ограждений зданий (инфильтрация), а также через форточки, окна, открываемые без всякой системы. Естественная вентиляция считается организованной, если направления воздушных потоков и воздухообмен регулируются с помощью специальных устройств. Систему организованного естественного воздухообмена называют аэрацией.

Аварийная вентиляция представляет собой самостоятельную установку и имеет большое значение для обеспечения безопасности эксплуатации взрыво- и пожароопасных производств и производств, связанных с использованием вредных веществ. Для автоматического включения аварийную вентиляцию блокируют с автоматическими газоанализаторами, установленными либо на величину ПДК (вредное вещество), либо на определенный процент от величины нижнего концентрационного предела взрываемости (взрывоопасные смеси). Кро­ме того, должен быть предусмотрен дистанционный пуск аварийной вентиляции пусковыми устройствами, расположенными у входных дверей снаружи помещения. Аварийную вентиляцию всегда устраивают только вытяжной , чтобы предотвратить переток вредных веществ в соседние помещения. Кратность вытяжки определяется отраслевыми правилами охраны труда (правилами безопасности), она колеблется в широких пределах.

Обычные системы вентиляции не способны поддерживать сразу все параметры воздуха в пределах, обеспечивающих комфортные условия в зонах пребывания людей. Эту задачу выполняет кондиционирование , которое является наиболее совершенным видом механической вентиляции и автоматически поддерживает микроклимат на рабочем месте независимо от наружных условий.

В соответствии со СНиП 2.04.05-91 кондиционирование воздуха - это автоматическое поддержание в закрытых помещениях всех или отдельных параметров воздуха (температуры, относительной влажности, чистоты, скорости движения) с целью обеспечения, главным образом, оптимальных метеорологических условий, наиболее благоприятных для самочувствия людей, ведения технологического процесса, обеспечения сохранности ценностей культуры.

При низких качестве кондиционеров и технологии их обслуживания в рабочих секциях возможно накопление микроорганизмов, в т.ч. и патогенных. В мировой и отечественной практике известны случаи, когда кондиционеры являлись источником инфекционных заболеваний людей. Поэтому в современных кондиционерах предусмотрена реализация дополнительных операций – обеззараживания, дезодорации, ароматизации, ионизации воздуха и др.

Различают системы комфортного кондиционирования, обеспечивающие в помещении постоянные комфортные условия для человека, и системы технологического кондиционирования, предназначенные для поддержания в производственном помещении требуемых технологическим процессом условий.

К эксплуатации допускаются вентиляционные системы, полностью прошедшие предпусковые испытания и имеющие инструкции по эксплуатации, паспорта, журналы ремонта и эксплуатации. В инструкции по эксплуатации вентиляционных систем должны быть отражены вопросы взрыво- и пожарной безопасности.

Плановые осмотры и проверки вентиляционных систем должны проводиться в соответствии с графиком, утвержденным администрацией объекта.

Ответственность за техническое состояние, исправность и соблюдение требований по­жарной безопасности при эксплуатации вентиляционных систем возлагается на должностное лицо, назначенное руководителем организации.

Профилактические осмотры помещений для вентиляционного оборудования, очистных устройств и других элементов вентиляционных систем, обслуживающих помещения с производствами категорий А, Б должны проводиться не реже одного раза в смену с занесением результатов осмотра в журнал эксплуатации. Обнаруженные при этом неисправности подлежат немедленному устранению.

Помещения для вентиляционного оборудования должны запираться, и на их дверях - вывешиваться таблички с надписями, запрещающими вход посторонним лицам.

Хранение в этих помещениях материалов, инструментов и других посторонних предме­тов, а также использование их не по назначению не допускается.

В процессе эксплуатации вытяжных вентиляционных систем, транспортирующих агрессивные среды, необходимо производить периодическую проверку толщины стенок воздуховодов вентиляционных устройств и очистных сооружений. Проверка должна производиться не реже одного раза в год.

Вентиляционные системы, располагающиеся в помещениях с агрессивными средами, должны проходить проверку состояния и прочности стенок и элементов крепления воздуховодов, вентиляционных устройств и очистных сооружений в сроки, установленные админи­страцией объекта, но не реже одного раза в год.

Ревизия огнезадерживающих клапанов, самозакрывающихся обратных клапанов в воздуховодах вентиляционных систем и взрывных клапанов очистных сооружений должны проводиться в сроки, устанавливаемые администрацией объекта, но не реже одного раза в год. Результаты оформляются актом и заносятся в паспорта установок.

При составлении планов реконструкции производства, связанных с изменением принятых технологических схем, производственных процессов и оборудования, должны одновременно рассматриваться вопросы о необходимости изменения существующих вентиляционных систем или о возможности их использования в новых условиях.

Вентиляционные системы, не подлежащие использованию вследствие изменения технологических схем и оборудования, должны быть демонтированы.

Ремонт и чистка вентиляционных систем должны производиться способами, исключающими возможность возникновения взрыва и пожара.

Чистка вентиляционных систем должна производиться в сроки, установленные инструкциями по эксплуатации. Отметка о чистке заносится в журнал ремонта и эксплуатации системы.

Аэроионизация и требования к аэроионному составу воздуха

СанПиН 9 – 98 РБ 98 регламентируют основные требования по гигиене труда и промышленной санитарии при работе с источниками аэроионов, а также в помещениях, оборудованных системами кондиционирования воздуха.

Искусственная аэроионизация воздуха производится специальными ионизаторами, например, люстрами Чижевского, которые могут обеспечить в ограниченном объеме заданную концентрацию ионов определенной полярности. Аэроионы повышают умственную и физическую работоспособность, снимают стресс, укрепляют нервную систему, повышают сопротивляемость организма к инфекционным заболеваниям.

Аэроионы характеризуются зарядом частиц и их подвижностью. Различают отрицательные и положительные аэроионы.

Основной величиной, характеризующей степень ионизации воздуха, является объемная плотность электрического заряда аэроионов, Кл/м 3 (кулон/м 3). Однако, традиционно степень ионизации воздуха выражается числом аэроионов единичного заряда, содержащихся в 1 см 3 .

Второй важной характеристикой аэроионов является их подвижность - коэффициент К, определяющий перемещение иона в электрическом поле, м 2 /В с. По подвижности весь спектр ионов условно подразделяется на пять диапазонов:

Легкие – с подвижностью К = 1,0 и более;

Средние – с подвижностью 1,0 < К > 0,01;

Тяжелые с подвижностью 0,01 < К> 0,001;

Ионы Ланжевена – с подвижностью 0,001 < К>0,0002;

Сверхтяжелые – с подвижностью К <0,0002.

По результатам измерения концентрации аэроионов рассчитывается показатель полярности П, представляющий собой отношение разности числа положительных ионов п + и отрицательных п - к их сумме:

П = п + - п - / п + + п - ;

Показатель полярности может изменяться от +1 до -1.

Санитарные правила регламентируют содержание в воздушной среде производственных и общественных зданий легких аэроионов с подвижностью К, равному или более 1,0 м 2 /Вс.

Для нормализации аэроионного состава воздуха в помещениях используют приточно-вытяжную вентиляцию, групповые и индивидуальные ионизаторы, устройства автоматического регулирования ионного режима воздушной среды.

Контроль уровня аэроионизации в воздухе производственных и общественных помещений, в которых находятся источники аэроионов, системы кондиционирования, должен проводиться в случаях:

При внедрении новых технологических процессов, производственного оборудования, которые могут изменить ионный состав воздушной среды;

При внедрении системы кондиционирования или технических средств нормализации аэроионного состава;

При организации новых рабочих мест в помещениях с системами аэроионизации воздушной среды.

При текущем санитарном надзоре измерения содержания аэроионов производятся не реже одного раза в год.

Требуемое состояние параметров микроклимата может быть обеспечено выполнением определенных мероприятий, к основным из которых относятся:

Механизация и автоматизация производственных процессов, дистанционное управление ими. Эти мероприятия имеют большое значение для защиты от воздействия вредных веществ. Автоматизация процессов, сопровождающихся выделением вредных веществ, не только повышает производительность, но и улучшает условия труда, поскольку рабочие выводятся из опасной зоны;

Применение технологических процессов и оборудования, исключающих образование вредных веществ или попадание их в рабочую зону. При проектировании новых технологических процессов и оборудования необходимо добиваться исключения или резкого уменьшения выделения вредных веществ в воздух производственных помещений. Этого можно достичь, например, применением пылеподавления водой (увлажнение, мокрый помол) при измельчении и транспортировке материалов и т. д.;

Устройство вентиляции и отопления, что имеет большое значение для оздоровления воздушной среды в животноводческих помещениях;

Применение средств индивидуальной защиты;

Вентиляция как средство защиты воздушной среды животноводческих помещений. Задачей вентиляции является обеспечение чистоты воздуха и заданных метеорологических условий на МТФ. Вентиляция достигается удалением загрязненного или нагретого воздуха из помещения и подачей в него свежего воздуха.

Для эффективной работы системы вентиляции выполнены следующие технические и санитарно-гигиенические требования:

количество приточного воздуха соответствует количеству удаляемого (вытяжки); разница между ними минимальная; свежий воздух подается в те части помещения, где количество вредных веществ минимально, а удаляется, где выделения максимальны; система вентиляции не вызывает переохлаждения или перегрева работающих, не создает шум на рабочих местах, превышающий предельно допустимые уровни; система вентиляции электро-, пожаро- и взрывобезопасна, проста по устройству, надежна в эксплуатации и эффективна.

Влажность воздуха оказывает большое влияние на терморегуляцию организма. Повышенная влажность (85%) затрудняет терморегуляцию из-за снижения испарения пота, а слишком низкая влажность(20%) вызывает пересыхание слизистых оболочек дыхательных путей. Оптимальные величины относительной влажности составляют 40-60%.

Расчет вентиляции МТФ

В соответствии с санитарными нормами в помещения животноводческого комплекса должна быть естественная вентиляция, осуществляемая через вытяжные канавы, шахты и т.д.

Естественная вентиляция состоит в том, что воздухообмен совершается через поры строительных материалов, через щели в стенах, потолках, дверях, не плотности в окнах, то есть без применения искусственных каналов и побудителей. Причиной воздухообмена в помещении является разница давлений наружного и внутреннего воздуха, возникающая вследствие скоростного напора ветра, а также в результате различия температур внутреннего и наружного воздуха и разности объемных весов воздуха.

Сущность естественного воздухообмена в животноводческих помещениях заключается в следующем. Ветер на наветренной стороне здания создает повышенное давление, а на подветренной - пониженное. В местах повышенного давления воздух нагнетается в помещение, а в местах пониженного давления - высасывается из него. Объем проникающего воздуха через стену зависит от проницаемости последней и скорости ветра.

Однако такая естественная, так называемая беструбная вентиляция не в состоянии обеспечивать необходимый воздухообмен в различные периоды года и совершенно не поддается регулированию. Для создания благоприятных условий воздушной среды в зданиях, построенных из материалов с высоким термическим сопротивлением, целесообразно иметь следующую кубатуру: для коров - не менее 30 м3, молодняка - 20м3.

Поскольку естественная вентиляция не может обеспечить достаточного воздухообмена и нормального состава его в помещении, то в дополнение к ней в помещениях для животных необходимо устанавливать искусственную вентиляцию.

Необходимо определить требуемый воздухообмен в животноводческом помещении - это количество воздуха, которое необходимо удалить из помещения за 1 час или подать в помещение. Этот воздухообмен рассчитывается из следующих соображений:

1) Из условия удаления избыточной влаги

где: Wж - количество влаги, выделяемой всеми животными в виде пара, Г/ч;

где: Wі - выделение влаги одним животным данной категории в виде пара, Г/ч;

m - количество животных;

Wисп - количество влаги, испаряющейся с пола, потолка, кормушек, стен и перекрытий, Г/ч (определяется в процентах к общему количеству выделяемой влаги);

gв - количество водяного пара (Г/м3,

gн - количество водяного пара в наружном воздухе при его температуре (абсолютная влажность), берется на основе данных метеостанции. Для Браславского р-на средняя температура в марте составляет минус 2,0 0С, а абсолютная влажность 6 г/м3.

2) Из условия удаления двуокиси углерода

где: У - количество двуокиси углерода, выделяемой всеми животными, находящимися в данном помещении, л/ч;

Уg - допустимое содержание двуокиси углерода в воздухе помещения, л/м3 (согласно нормам оно не должно превышать 2,5 л/м3);

Количество двуокиси углерода, выделяемой всеми животными

где: Уi - выделение двуокиси углерода одним животным данной категории, л/ч;

mi - количество животных данной категории.

Из двух полученных расходов воздуха принимается наибольший (L). В нашем случае.

После этого определяем удельный воздухообмен (L1) из расчета подачи воздуха на 1ц живого веса по формуле:

где: L - наибольшее значение воздухообмена, м3/ч;

n - количество животных;

G - средний живой вес одного животного (для КРС можно принять 4,5…5 ц).

Полученное значение L сравниваем с нормами воздухообмена на 1 ц живого веса (L), приведенными в табл. 2 для переходного периода года. Например, для КРС он составит 35 м3/ч.

Если L" > L", то необходимый воздухообмен определится, исходя из значения L". В нашем случае 3536,4.

Вытяжная вентиляция для ферм КРС чаще выполняется естественной и она осуществляется через верхние вытяжные колодцы (или шахты), расположенные в крыше фермы КРС. Размеры шахт (колодцев) рекомендуется выбирать 1х1м или 1х1,5м. В таких шахтах устраиваются поворотные заслонки, изменяя положение которых можно регулировать проходное сечение вытяжного колодца или шахты, а значит и интенсивность вытяжки. Большие вытяжные шахты (2х1,5м или 1,5х3м) не обеспечивают равномерной циркуляции воздуха по длине животноводческих помещений.

Для расчета вытяжных шахт (колодцев) необходимо знать скорость воздуха (W) в них, она рассчитывается по эмпирической формуле:

где: h - высота шахты (колодца), м. Можно принять 1,5…2 м.

tв - температура воздуха внутри помещения, 0С (порядка + 10…-12 0С);

tн - температура воздуха снаружи помещения, 0С (порядка -5…-8 0С).

Общая площадь вытяжных шахт:

где: L - значение воздухообмена за 1 час - м 3 /ч

Количество вытяжных шахт:

где: F 1 - площадь одной вытяжной шахты, м 2

Площадь приточных каналов F п, м 2:

F п =0,6F 1 =0.6*14.4=8.64, м 2

Число приточных каналов:

Таким образом, рассчитав естественную вентиляцию можно сделать заключение: полученный удельный воздухообмен соответствует нормам и равен 36,4 м2. Необходимое количество вытяжных шахт=14, что больше, чем есть в действительности на 4 шахты.

вредный производственный индивидуальный защита