Гпн-причины образования горючей среды. Оценка возможности возникновения горючей среды внутри технологического оборудования Пожары в быту

Применяемые в различных технологиях аппараты и трубопроводы с пожаровзрывоопасными веществами при определенных условиях могут явиться местом возникновения пожара или взрыва. Для выявления возможности возникновения горения внутри технологического оборудования необходимо, прежде всего, оценить возможность образования в нем горючей среды. Под горючей средой понимается смесь горючего вещества с окислителем в таких соотношениях, при которых возможно возникновение и дальнейшее развитие горения.

Для оценки возможности образования горючей среды внутри технологического оборудования необходимо знать основные режимные параметры (рабочую температуру, давление, концентрацию), а для аппаратов с жидкостями необходимо также иметь сведения о наличии свободного объёма. Эта информация содержится в технологической документации.

Условия образования горючей среды в аппаратах с горючими газами, жидкостями, твердыми материалами и пылями несколько отличаются.

Аппараты с газами чаще всего заполняются чистыми горючими газами без примесей окислителя. Такие аппараты всегда находятся под избыточным давлением, поэтому поступление воздуха в них не­возможно, а следовательно, невозможно и образование горючей среды.

В редких случаях по условиям технологии в аппарат необходимо подавать смесь горючего газа с воздухом или кислородом (например, при получении водорода конверсией метана или при получении ацети­лена путем

Таблица 2.2 ― Анализ пожарной опасности аппаратов



термоокислительного пиролиза природного газа). В таких ситуациях возможность образования горючей среды оценивают путем сравнения рабочей концентрации j р с нижним и верхним концентраци­онными пределами распространения пламени. Горючая среда будет иметь место, если выполняется условие:

В закрытых аппаратах с жидкостями горючая среда может образоваться только в том случае, когда над поверхностью (зеркалом) жидкости имеется свободный объем. При этом любая жидкость, находящаяся в аппарате, будет испаряться, и ее пары постепенно распределятся в свободном пространстве. Если в свободном пространстве аппарата имеется воздух или любой другой окислитель, то пары жидкости, смешиваясь с ним, могут образовать горючую среду.

Наличие над зеркалом жидкости свободного пространства является необходимым, но не достаточным условием для образования горючей среды. Для того чтобы выяснить наличие в аппарате горючей паровоздушной смеси, необходимо, как и в случае с газами, проверить условие (2.3).

Однако при этом следует учитывать, что концентрация паров по высоте свободного пространства распределяется неравномерно. Над поверхностью жидкости она близка к концентрации насыщения, а у крыши аппарата её значения минимальны. Даже на одной и той же высоте в различные промежутки времени от начала испарения концентрация будет отличаться. Это обусловлено, прежде всего, особенностями протекания процесса диффузии паров в свободное пространство аппарата. То есть для технологического оборудования с горючими жидкостями характерно то, что в свободном пространстве может присутствовать лишь некоторая область концентраций, которая находится между нижним и верхним концентрационными пределами воспламенения. Высота расположения зоны опасных концентраций с течением времени изменяется. С методиками расчётного определения концентрации паров в свободном пространстве аппаратов с жидкостями можно ознакомиться в специальной литературе .

Для аппаратов с неподвижным уровнем жидкости (например, для аппаратов непрерывного действия) оценка возможности образования горючей среды может быть облегчена. Эксплуатация таких аппаратов характеризуется неизменными значениями рабочей концентрации при постоянной температуре и давлении в аппарате. Учитывая это, оценку возможности образования горючей среды можно провести путем сравнения рабочей температуры жидкости t р со значениями температурных пределов распространения пламени. Горючая среда в аппара­тах с неподвижным уровнем жидкости будет образовываться в том случае, если выполняется условие:

(2.4)

Условие (2.4) можно также использовать и для аппаратов с подвижным уровнем жидкости в период их заполнения после простоя. Это обусловлено тем, что при подъеме уровня жидкости в аппарате насыщенная концентрация паровоздушной смеси над зеркалом жидкости не изменяется. В случае же опорожнения таких аппаратов состояние насыщения свободного пространства парами жидкости нарушается за счет поступления дополнительного количества воздуха через дыхательную арматуру. При этом концентрация паров над зеркалом жидкости уменьшается и может стать опасной. Поэтому оценку возможности образо­вания горючей среды в период опорожнения аппаратов производят только по условию (2.3).

Итак, в общем случае возможность образования горючей среды в закрытых аппаратах с горючими и легковоспламеняющимися жидкостями может быть оценена путем:

1) проверки наличия над зеркалом жидкости свободного паровоздушного объема;

2) сравнения рабочей концентрации паров жидкости с концентрационными пределами воспламенения;

3) сравнения рабочей температуры жидкости в аппарате со значениями температурных пределов воспламенения.

В технологическом оборудовании с твердыми горючими веществами и материалами горючая среда может образоваться при тепловом воздействии на последние или в результате их саморазогрева. Как известно, сами твердые горючие вещества и материалы не способны образовывать в смеси с воздухом горючую среду. Однако в процессе их нагрева до некоторых температур может начаться процесс разложения с выделением летучих. Так, в процессе пиролиза древесины при температурах 150 – 275 о С происходит разложение менее термостойких ее компонентов с выделением окиси углерода, уксусной кислоты, метана, водорода и других веществ. Выделяющиеся продукты разложения в смеси с окислителем при определенных условиях могут образовывать горючую смесь. В таких случаях оценку возможности образования горючей среды в технологическом оборудовании производят, как и в случае газами, по условию (2.3).

Технологические аппараты с горючими пылями характеризуются значительной пожарной опасностью. При работе мельниц, дробилок, хлопковых разрыхлителей, центробежных классификаторов, систем пневмотранспорта образуется очень большое количество пыли. Пыли в таких аппаратах могут находиться во взвешенном в воздухе состоянии (аэрозоль) и в осевшем состоянии (аэрогель). В первом случае пожарная опасность пылей рассматривается как для газов и паров, во втором случае ─ как для твердых веществ и материалов.

Взвешенная в воздухе пыль может образовывать взрывоопасные концентрации. Для оценки возможности образования горючей среды внутри технологического оборудования с пылевидными материалами на практике используют значение нижнего концентрационного предела распространения пламени j н. Верхние концентрационные пределы для пылей настолько велики, что практического значения для оценки пожарной опасности не имеют. Кроме того, пылевоздушные смеси в большей степени, чем паро- и газовоздушные, склонны к расслоению. Поэтому в оборудовании даже при очень высоких концентрациях всегда могут образовываться локальные зоны с концентрацией ниже ВКПР.

При определении рабочей (фактической) концентрации пыли внутри технологического оборудования необходимо учитывать массу взвешенной и осевшей пыли. Горючая среда в аппаратах с пылями будет образовываться в том случае, если выполняется условие:

Взрывы и пожары внутри технологического оборудования часто возникают в периоды неустановившегося режима работы . К таким периодам относятся пуск аппаратов в эксплуатацию и их остановка для профилактического осмотра или ремонта. В эти периоды опасность образования горючей среды внутри технологического оборудования очень высока. Так период пуска оборудования характеризуется поступлением горючих компонентов в объем аппаратов, заполненных воздухом, и выходом аппаратов на заданный рабочий режим. При этом концентрация горючих веществ в аппаратах увеличивается и может стать горючей, если превысит значение НКПР.

Причинами образования горючей среды при остановке технологического оборудования являются:

· снижение температурного режима в аппаратах с рабочей температурой жидкости, превышающей значение ВТПР. При этом температура, снижаясь, войдет в температурную область воспламенения;

· поступление наружного воздуха через дыхательную арматуру при опорожнении аппаратов или через открытые люки при их разгерметизации;

· неполное удаление из аппаратов горючих веществ;

· негерметичное отключение аппаратов от трубопроводов с горючими веществами. При этом горючие вещества через неплотности будут попадать в аппарат, и образовывать в смеси с воздухом горючую смесь.

Все эти особенности необходимо учитывать при оценке возможности образования горючей среды внутри технологического оборудования и разработке пожарно-профилактических мероприятий.

После проведённого анализа возможности образования горючей среды внутри каждого технологического аппарата необходимо дать соответствующее заключение и сделать запись в графе 6 таблицы 2.2.

Факультет Систем Защит и Безопасности

Кафедра Защита в Чрезвычайных ситуация

« Условия образования горючих сред»

Выполнил: ст.гр. 08-З3 Былинкин А

Проверил: Погодин Г

Горючая среда.

    Источник зажигания - открытый огонь, химическая реакция, электроток.

    Наличие окислителя, например, кислорода воздуха.

Горючая среда

Среда, способная самостоятельно гореть после удаления источника зажигания

Горючая среда

Среда, способная воспламеняться при воздействии источника зажигания;

Горючая среда – совокупность веществ, материалов, оборудования и конструкций, способных гореть.

Для горения необходимы горючее вещество, кислород (или иной окислитель) и источник вос­пламенения.

Чтобы возникло горение, горючее вещество должно быть на­грето до определенной температуры источником воспламенения (пламенем, искрой, накаленным телом) или тепловым прояв­лением какого-либо другого вида энергии: химической (экзо­термическая реакция), механической (удар, сжатие, трение) и т. д. Выделившиеся при нагревании горючего вещества пары и газы смешиваются с воздухом и окисляются, образуя горючую среду. По мере накопления тепла в результате окисления газов и паров скорость химической реакции увеличивается, вследствие чего происходит самовоспламенение горючей смеси и появля­ется пламя.

С появлением пламени наступает горение, которое при благоприятных условиях продолжается до полного сгорания ве­щества. В установившемся процессе горения постоянным источником воспламенения является зона горения, т. е. область, где про­текает химическая реакция, выделяется тепло и излучается свет.

Для возникновения и протекания горения горючее вещество н кислород должны находиться в определенном количественном соотношении. Содержание кислорода в воздухе для большинства горючих веществ должно быть не менее 14-18%.

Пожары или взрывы в зданиях и сооружениях могут возникать либо в результате взрыва технологического оборудования, находящегося в этих зданиях и сооружениях, либо в результате пожара или взрыва непосредственно в помещении, в котором используются горючие вещества и материалы.

Причинами образования взрывоопасной среды в технологическом оборудовании могут быть:

Некоторые технологические процессы в нормальном режиме (окисление органических жидкостей, окрасочные и сушильные камеры, пневмотранспортировка измельченных материалов и т.п.);

Подсос воздуха в аппараты, находящиеся под разряжением (вакуумные ректификационные колонны);

Мойка и очистка деталей в растворителях…

Причинами образования взрывоопасной среды непосредственно в помещении могут быть: выброс или утечка горючего газа, легковоспламеняющейся жидкости или горючей пыли из технологического оборудования в результате неисправности аппаратуры, потери прочности, неправильной деятельности персонала, внезапного отключения вентиляции и других причин.

Образование горючей среды

На промышленных, сельскохозяйственных и других предприятиях хранятся и перерабатываются разные по своим физико-химическим и пожаровзрывоопасным свойствам жидкие, твердые и газообразные вещества. Например, жидкости могут находиться и в герметично закрытых, и в открытых емкостях, а газы, в том числе и сжиженные, - только в герметично закрытых аппаратах. Упругость паров жидкости над ее зеркалом в аппарате приближается или равняется давлению насыщенных паров при данной температуре, в то время как концентрация газов в аппаратах от температурного режима не зависит.

Твердые вещества и материалы в большинстве случаев хранятся и перерабатываются открыто, то есть без специальных укрытий и изоляции. В этих случаях, когда вещества способны к самовозгоранию в воздухе или процесс их обработки сопровождается образованием пыли и продуктов разложения, обработку твердых веществ осуществляют без доступа воздуха или в закрытых аппаратах с местной системой улавливания пыли. При этом условия образования опасных концентраций в аппаратах с пылью несколько отличается от условий в аппаратах с жидкостями и газами.

Опасные концентрации горючих веществ и материалов в технологических процессах производства могут образовываться как при нормальной эксплуатации технологического оборудования, так и при его повреждениях и разрушениях.

При нормальной работе оборудования опасность представляет образование горючей среды (смесь горючего вещества с окислителем в определенном соотношении) в средине аппаратов с горючими веществами.

В соответствии с ГОСТ 12.1.044-89 в технологическом оборудовании и производственных помещениях с наличием горючих газов и жидкостей горючая среда образуется при выполнении следующего условия:

где - рабочая (действительная) концентрация газа или паров жидкости в аппарате, помещении,или 0% об;

Соответственно нижний и верхний концентрационные пределы распространения пламени,или 0% об (справочные данные).

Для технологического оборудования и производственных помещений с наличием горючей пыли условие пожаровзрывоопасности имеет следующий вид:

где - рабочая (действительная) концентрация пыли во взвешенном и осевшем состоянии в аппарате или в помещении,;

Нижний концентрационный предел распространения пламени, (справочные данные).

Таким образом, оценку возможности образования горючей среды в технологическом оборудовании можно произвести из выше приведенных условий, определив при этом действительную рабочую концентрацию горючих веществ в аппаратах или производственных помещениях.

Рабочая концентрация горючего газа в технологическом оборудовании определяется расчетом или экспериментально, а также исходя из данных технологического регламента. При этом необходимо учитывать, что нормальные работающие аппараты с газами чаще всего связаны с избыточным давлением, т.е. полностью заполнены, следовательно, рабочая концентрация газа в них составляет 100%.

В отличие от аппарата с газами, аппараты с горючими и легковоспламеняющимися жидкостями в целях безопасности никогда не заполняются полностью. Это связано со свойствами жидкостей испаряться в зависимости от температуры. В связи с этим аппараты, резервуары, емкости с горючими жидкостями над зеркалом жидкости имеют определенное свободное пространство, которое постепенно насыщается парами горючей жидкости при ее испарении. При наличии в этом пространстве воздуха пары жидкости смешиваются с ним и могут образовываться взрывоопасные смеси. При повышении температуры концентрация паров жидкости в свободном пространстве увеличивается и равномерно распределяется по высоте аппарата. При длительном хранении горючих жидкостей концентрация ее паров над зеркалом жидкости становится насыщенной, то есть

Оценить возможность образования горючей среды в аппаратах с горючими жидкостями можно из условия (1).

Концентрация насыщенных паров жидкости определяется величиной давления насыщенных парови рабочего давленияв объме паровоздушного пространства аппарата:

Давление насыщенных паров жидкости зависит от ее температуры и определяется по уравнению Антуана:

, (4)

где - давление насыщенных паров при рабочей температуре жидкости, Па;

Рабочая температура жидкости, ;

Константы Антуана, зависящие от свойств жидкости, справочные данные.

Таким образом, условиями образования горючей среды в технологическом оборудовании с горючими и легковоспламеняющимися жидкостями являются:

Наличие свободного пространства в аппарате;

Наличие окислителя;

В аппаратах с горючими газами горючая среда образуется, если выполняются следующие условия:

Наличие окислителя;

Выполнение условия пожаровзрывоопасности (1).

В технологическом оборудовании с горючими пылями пожаровзрывоопасной будет среда при:

Наличии окислителя;

Выполнении условия пожаровзрывоопасности (2).

Основными причинами образования горючей среды внутри и вне технологического оборудования есть: разгерметизация и разрушение аппаратов, нарушение безопасных режимов ведения технологических процессов, а также применение незавершенных технологических процессов (открытая обработка и транспортирование веществ и материалов и т.п.).

Пример: г. Сумгаит, ПО „Оргсинтез”, 1998 г. Во время слива сжиженного газа с шаровых емкостей - 600 куб.м - произошел взрыв. Взрывной волной был переброшен соседний резервуар. С пробитого осколками корпуса мощной струей било пламя. Еще 8 резервуаров были охвачены пламенем, горела сливо-наливная эстакада. Площадь пожара составляла 6000 кв.м. Непосредственной причиной взрыва и пожара стало нарушение технологии хранения бутадиена. От длительного хранения продукта на днище емкости образовался пласт перекисных соединений и началась неуправляемая реакция полимеризации с повышением температуры и давления, что и привело к взрыву.

Наибольшую опасность для производства представляют повреждения и аварии технологического оборудования, в результате которых значительное количество горючих веществ выходит наружу и приводит к опасным накоплениям горючих паров, пылей и газов в помещениях. Аварии при этом сопровождаются высокой загазованностью помещений, территорий, разливом жидкостей на большие площади.

Последствия повреждений или аварий будут зависеть от размеров аварии, а также от пожаровзрывоопасных свойств веществ, выходящих наружу из аппаратов, а также от их температуры и давления.

Горючесть - способность вещества, материала, изделия к самостоятельному горению.

По способности к самовозгоранию химические вещества подразделяются на три группы:

1-я группа.

Вещества, самовозгорающиеся при соприкосновении с воздухом (активированный уголь, фосфор белый, растительные масла и жиры, сернистые металлы, алюминиевый порошок, карбид щелочных металлов, порошкообразные железо, цинк и др.).
Окисление некоторых веществ этой группы, вызванное их взаимодействием с водяными парами воздуха, сопровождается выделением большого количества теплоты и протекает настолько быстро, что вскоре переходит в горение или взрыв. Для других веществ процессы самонагревания продолжаются длительное время (например, процесс самовозгорания белого фосфора заканчивается горением через несколько секунд, а процесс самовозгорания свежеприготовленного активированного угля продолжается несколько дней).

2-я группа.

Вещества, вызывающие горение при взаимодействии га с водой (щелочные металлы и их карбиды, окись кальция (негашеная известь), перекись натрия, фосфористый кальций, фосфористый натрий и др.).
Взаимодействие щелочных металлов с водой или влагой воздуха сопровождается выделением водорода, который воспламеняется за счет теплоты реакции. Попадание на негашеную известь небольшого количества воды вызывает самонагревание, заканчивающееся сильным разогревом (до свечения), поэтому находящиеся поблизости горючие материалы могуттзоспламениться.

3-я группа.

Вещества, самовозгорающиеся при смешивании одного с другим. Так, воздействие азотной кислоты на древесину, бумагу, ткани, скипидар и эфирные масла вызывает воспламенение последних; хромовый ангидрид воспламеняет спирты, эфиры и органические кислоты; ацетилен, водород, метан и этилен само­возгораются в атмосфере хлора на дневном свету; измельченное железо (опилки) самовозгорается в атмосфере хлора; карбиды щелочных металлов воспламеняются в атмосфере хлора и двуокиси углерода.



Температурой вспышки называется наименьшая температура горючего вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары или газы, способные вспыхивать в воздухе от внешнего источника зажигания.

Температура вспышки является параметром, ориентировочно показывающим температурные условия, при которых горючее вещество становится огнеопасным. Температура вспышки горючих жидкостей при данной классификации определяется только в закрытом тигле.

Областью воспламенения газов (паров) в воздухе называется область концентрации данного газа в воздухе при атмосферном давлении, внутри которой смеси газа с воздухом способны воспламеняться от внешнего источника зажигания с последующим распространением пламени по смеси.

Граничные концентрации области воспламенения называют соответственно нижним и верхним пределами воспламенения газов (паров) в воздухе. Величины пределов воспламенения используют при расчете допустимых концентраций газов внутри взрывоопасных технологических аппаратов, систем вентиляции, а также при определении предельно допустимой взрывоопасной концентрации паров и газов при работах с применением огня, искрящего инструмента.

Величину концентрации газа или пара в воздухе внутри технологического аппарата, не превышающую 50% величины нижнего предела воспламенения, можно принимать как взрывобезопасную концентрацию. Обеспечение взрывобезопасности среды внутри аппа­ратуры при нормальном технологическом режиме не дает основания считать данное оборудование невзрывоопасным.

За величину предельно допустимой взрывобезопасной концен­трации (ПДВК) паров и газов при работе с применением огня, искрящего инструмента следует принимать концентрацию, которая не превышает 5% величины нижнего предела воспламенения данного пара или газа в воздухе при отсутствии в рассматриваемом аппарате конденсированной фазы.

Температурными пределами воспламенения паров в воздухе называются такие температурные границы вещества, при которых насыщенные пары образуют концентрации, равные соответственно нижнему или верхнему концентрационному пределу воспламенения.

Температурные пределы воспламенения учитывают при расчете безопасных температурных режимов в закрытых технологических объемах с жидкостями (топливные грузовые танки и т.п.), работающими при атмосферном давлении.

Безопасной, в отношении возможности образования взрыво­опасных паровоздушных смесей, следует считать температуру и максимальное давление взрыва.

Максимальное давление взрыва- это наибольшее давление, возникающее при взрыве. Его учитывают при расчете взрывоустойчивости аппаратуры с горючим газом, жидкостями и порошкообразными веществами, а также предохранительных клапанов и взрывных мембран, оболочек взрывонепроницаемого электро­оборудования.

Показатель возгораемости (коэффициент К) ~ безразмерная величина, выражающая отношение количества тепла, выделяемого образцом в процессе испытаний, к количеству тепла, выделяемому источником зажигания,

где q - тепло, выделенное образцом в процессе горения, ккал;

q и - тепловой импульс, т.е. тепло, подведенное к образцу от постоянного источника

поджигания, ккал.

По результатам испытаний степень возгораемости оценивается следующим образом.

Материалы несгораемые - материалы, которые при нагревании до 750°С не горят и на воздухе не выделяют горючих газов в количестве, достаточном для их воспламенения от поднесенного пламени. Поскольку определенный по методу калориметрии коэффициент К < 0,1 , такие материалы не способны гореть на воздухе.

Материалы трудносгораемые - материалы, температура воспла­менения которых ниже 750°С, причем материал горит, тлеет или обугливается только под воздействием поднесенного пламени и перестает гореть или тлеть после его удаления (0,1 < К < 0,5).

Материалы трудновоспламеняемые (или самозатухающие) - мате­риалы, температура воспламе-нения которых ниже 750°С, причем материал горит, тлеет или обугливается под воздействием поднесенного пламени. После его удаления материал продолжает гореть затухающим пламенем, не рас-пространяющимся по образцу (0,5 < К < 2,1). Такие материалы не способны возгораться в воздушной среде даже при длительном воздействии источника зажигания незначительной энергии (пламени спички 750 - 800°С, тления папиросы 700 - 750°С и т.д.).

Материалы сгораемые - материалы, температура воспламенения которых ниже 750°С, причем материал, воспламенившись от поднесенного пламени, продолжает гореть или тлеть после его удаления > 2,1).

Скорость горения. Скорость горения твердого вещества зависит от его формы. Измельченные твердые вещества в виде опилок или стружек будут гореть быстрее, чем монолитные. У измельченного горючего вещества большая поверхность горения подвергается воздействию тепла, поэтому теплота поглощается намного быстрее, испарение происходит значительно активнее, с выделением большего количества паров. Горение протекает очень интенсивно, вследствие чего горючее вещество расходуется быстро. С другой стороны, монолитное горючее вещество будет гореть дольше, чем измельченное.

Облака пыли состоят из очень мелких частиц. Когда облако воспламеняющейся пыли (например, зерновой) хорошо перемешивается с воздухом и воспламеняется, горение происходит очень быстро и часто сопровождается взрывом. Такие взрывы наблюдались при погрузке и выгрузке зерна и других измельченных горючих веществ.

Различают две скорости горения: массовую и линейную.

Массовой скоростью горения называется масса (т, кг) вещества, выгоревшего в единицу времени (мин, ч).

Линейной скоростью горения твердых горючих веществ называется скорость распространения огня (м/мин) и скорость роста площади очага пожара (м 2 /мин). Скорость горения твердых веществ зависит от степени их измельчения, влажности, объемного веса, доступа воздуха и ряда других факторов.

Изучение случаев пожара на судах дает возможность принять следующую среднюю линейную скорость горения (м/мин) различных объектов:

Посты управления.....................................................................0,5

Жилые помещения...................................................................1,0-1,2

Хозяйственные помещения, кладовые сгораемых материалов.....0,6-1,0

Грузовые помещения..................................... .........................0,5-0,7

Палубы автомобильных паромов............... ...............................1,5

Машинное отделение с ДВС при горении дизельного топлива под плитами....10

Отделения вспомогательных механизмов......... .........................1,2

Помещения электрооборудования.............................................0,8

Котельные отделения при горении мазута под плитами.............8,0

Примерно в течение первых 2-3 мин пожара быстро увели­чивается площадь его очага (на пассажирских судах - до 20 м 2 /мин). Это время уходит обычно на сбор по тревоге экипажа судна и поэтому активная борьба с пожаром еще не ведется. В последующие 10 мин, когда начинают использоваться стационарные средства водо- и пенотушения, рост площади очага пожара замедляется.

Линейная скорость распространения огня определяет площадь очага пожара, а степень выгорания всего, что может гореть на этой площади, - продолжительность пожара.

Линейная скорость горения жидкости характеризуется высотой ее слоя (мм, см), выгоревшего в единицу времени (мин, ч). Скорость распространения пламени при воспламенении горючих газов составляет от 0,35 до 1,0 м/с.

Скорость выгорания характеризуется количеством горючего, сгорающего в единицу времени с единицы площади горения. Она определяет интенсивность сгорания материалов при пожаре. Ее необходимо знать для расчета продолжительности пожара в любых жидкостях. Скорость выгорания жидкости, разлитой на поверхности морской воды, примерно такая же, как и при выгорании ее с открытых поверхностей емкостей.

Температура. Важнейшим параметром судового пожара, в значи­тельной мере определяющим не только инженерно-профилактические мероприятия, но и тактические действия аварийных партий и групп судов является температура. Особенно большое значение имеет температура при внутренних судовых пожарах.

От температуры пожара зависит интенсивность теплопередач от зоны пожара в окружающую среду, скорость движения газовых потоков, а также возможность взрывов, представляющих крайнюю опасность при тушении пожара.

Температурное поле пожара весьма неоднородно. Чем ближе к зоне пожара, тем температура, как правило, выше. В верхней части помещений воздух обычно более нагрет, чем у палуб. С учетом поведения судовых конструкций и материалов и с пожарно-тактической точки зрения удобнее всего за температуру пожара принять среднюю температуру дымовых газов, заполняющих зону пожара. Существенное значение имеют также температуры на поверхностях судовых конструкций, ограждающих зону пожара: температура на поверхности, обращенной к огню, и температура на противоположной огню поверхности.

Ориентировочно температуру в некоторых точках зоны пожара можно определить косвенным путем - по оплавлению несгоревших материалов, находившихся в зоне пожара, или по цвету каления нагретых тел (табл. 4.1).

Таблица 4.1

Зависимость цвета каления от температуры

При горении твердых материалов температура пожара зависит главным образом от рода материалов, величины пожарной нагрузки, условий притока воздуха и удаления продуктов сгорания, а также продолжительности горения.

Зависимость температуры пожара от продолжительности горения для всех твердых веществ имеет приблизительно одинаковый характер. Вначале температура резко возрастает до максимума, а по мере выгорания материала происходит ее постепенный спад. При повышении пожарной нагрузки увеличивается общая продолжи­тельность горения, возрастает максимальная температура пожара, спад температуры происходит медленнее, но характер зависимости остается неизменным.

В условиях ограниченного газообмена, например при закрытых проемах в жилом помещении, увеличение температур происходит значительно медленнее. Максимальная температура достигает 800 -900°С.

Температурный режим в помещениях при горении жидкостей имеет свои особенности. Поскольку жидкости обычно находятся в каких-либо сосудах (в поддонах, цистернах и т.д.), их горение зачастую имеет локальный характер. В этих условиях, если отношение площади горения к площади палубы близко к единице, температура пожара составляет приблизительно 1100°С. Если же площадь горения составляет лишь небольшую часть площади палубы, температура значительно ниже.

Температурный режим пожара при одновременном горении жидкостей и твердых материалов зависит от того, какие горючие материалы преобладают: если жидкости составляют лишь небольшую часть пожарной нагрузки, то температурный режим мало отличается от режима твердых материалов.

При внутренних пожарах в зоне агрессивного воздействия тепла могут быть внезапные конвективные потоки раскаленных газов, которые возникают при изменении условий газообмена, вызываемых открыванием дверей и других проемов.

Зона агрессивного воздействия тепла является частью зоны задымления, в ней возможны опасные для человека температуры. Человек способен очень короткое время находиться в сухом воздухе, имеющем температуру 80 - 100°С. Длительное пребывание при температуре 50 - 60°С вызывает тягчайшие последствия от перегре­вания. Влажный воздух при температуре 50 - 60°С для многих людей становится непереносимым через несколько минут.

При оценке пожарной опасности газов определяют область воспламенения в воздухе, максимальное давление взрыва, температуру самовоспламенения, категорию взрывоопасной смеси, минимальную энергию зажигания, минимальное взрывоопасное содержание кисло­рода, номинальную скорость горения.

При оценке пожарной опасности жидкостей определяют группу горючести, температуру вспышки, температуру воспламенения, темпе­ратурные пределы воспламенения, скорость выгорания. Для легко­воспламеняющихся жидкостей дополнительно определяют область вос­пламенения в воздухе, максимальное давление взрыва, категорию взрывоопасной смеси, минимальную энергию зажигания, минимальное взрывоопасное содержание кислорода, нормальную скорость горения.

При оценке пожарной опасности всех твердых веществ и материалов определяют группу возгораемости, температуру воспла­менения. Для твердых веществ с температурой плавления ниже 300°С дополнительно определяют: температуру вспышки, температурные пределы воспламенения паров в воздухе.
Для пористых, волокнистых и сыпучих материалов при необходимости дополнительно определяют температуру самонагревания, температуру тления при самовозгорании, температурные условия теплового самовозгорания.
Для веществ порошкообразных или способных образовать пыль дополнительно определяют нижний предел воспламенения аэровзвеси, максимальное давление взрыва аэровзвеси, минимальную энергию зажигания аэро­взвеси, минимальное взрывоопасное содержание кислорода.

При оценке пожарной опасности вещества необходимо изучить его свойства, выявить возможность их изменения с течением времени и при использовании в определенных условиях. В особенности это важно учитывать при контакте вещества с другими активными веществами при длительном нагреве, облучении и других внешних воздействиях, в результате которых могут измениться его физико-химические свойства.

При испытании судостроительных, а также других твердых материалов на возгораемость первоначально выявляется группа сгораемых материалов методом огневой трубы.

Материал считается сгораемым, если при испытании методом огневой трубы время самостоятельного горения или тления превышает 1 мин, а потеря веса образца - 20%. К сгораемым материалам относятся также материалы, самостоятельно горящие пламенем по всей поверхности образца, независимо от потери веса и времени его горения. Такие материалы дальнейшим испытаниям не подвергаются.

Материалы, имеющие потерю веса менее 20%, а также материалы, теряющие 20% веса и более, но самостоятельно горящие или тлеющие менее 1 мин для окончательной оценки степени возгораемости подвергаются дополнительным испытаниям по методу калориметрии.

Все горючие (сгораемые) вещества содержат углерод и водород, основные компоненты газо-воздушной смеси, участвующие в реакции горения. Температура воспламенения горючих веществ и материалов различна и не превышает для большинства 300°С.

Физико-химические основы горения заключаются в термическом разложении вещества или материала до углеводородных паров и газов, которые под воздействием высоких температур вступают в химическое воздействие с окислителем (кислородом воздуха), превращаясь в процессе сгорания в углекислый газ (двуокись углерода), угарный газ (окись углерода), сажу (углерод) и воду, и при этом выделяется тепло и световое излучение.

Воспламенение представляет собой процесс распространение пламени по газопаровоздушной смеси. При скорости истечения горючих паров и газов с поверхности вещества равной скорости распространения пламени по ним наблюдается устойчивое пламенное горение. Если же скорость пламени больше скорости истечения паров и газов, то происходит выгорание газопаровоздушной смеси и самозатухание пламени, т.е. вспышка. В зависимости от скорости истечения газов и скорости распространения пламени по ним можно наблюдать:

Горение на поверхности материала, когда скорость выделения горючей смеси с поверхности материала равна скорости распространения огня по ней;

Горение с отрывом от поверхности материала, когда скорость выделения горючей смеси больше скорости распространения пламени по ней.

Горение газопаровоздушной смеси подразделяется на диффузионное или кинетическое. Основным отличием является содержание или отсутствие окислителя (кислорода воздуха) непосредственно в горючей газопаровоздушной смеси.

Кинетическое горение представляет собой горение предварительно перемешанных горючих газов и окислителя (кислорода воздуха). На пожарах этот вид горения встречается крайне редко. Однако он часто встречается в технологических процессах: в газовой сварке, резке и т.п.

При диффузионном горении окислитель поступает в зону горения извне. Поступает он, как правило, снизу пламени вследствие разрежения, которое создается у его основания. В верхней части пламени, выделяющееся в процессе горения тепло, создает давление. Основная реакция горения (окисления) происходит на границе пламени, поскольку истекающие с поверхности вещества газовые смеси препятствуют проникновению окис­лителя вглубь пламени (вытесняют воздух). Большая часть горючей смеси в центре пламени, не вступившая в реакцию окисления с кислородом, представляет собой продукты неполного горения (СО, СН, углерод и пр.).

Диффузионное горение, в свою очередь, бывает ламинарным (спокойным) и турбулентным (неравномерным во времени и пространстве). Ламинарное горение характерно при равенстве скоростей истечения горючей смеси с поверхности материала и скорости распространения пламени по ней. Турбулентное горение наступает, когда скорость выхода горючей смеси значительно превышает скорость распространения пламени. В этом случае граница пламени становится неустойчивой вследствие большой диффузии воздуха в зону горения. Неустойчивость вначале возникает у вершины пламени, а затем перемещается к основанию. Такое горение встречается на пожарах при объемном его развитии*(см. ниже).

Горение веществ и материалов возможно только при определенном количестве кислорода в воздухе. Содержание кислорода, при котором исключается возможность горения различных веществ и материалов, устанавливается опытным путем. Так, для картона и хлопка самозатухание наступает при 14% (об.) кислорода, а полиэфирной ваты - при 16% (об.).

Исключение окислителя (кислорода воздуха) является одной из мер пожарной профилактики. Поэтому хранение легковоспламеняющихся и горючих жидкостей, карбида кальция, щелочных металлов, фосфора долж­но осуществляться в плотно закрытой таре.

Источники зажигания

Необходимым условием воспламенения горючей смеси являю источники зажигания. Источники зажигания подразделяются на открытый огонь, тепло нагревательных элементов и приборов, электрическую энергию, энергию механических искр, разрядов статического электричества и молнии, энергию процессов саморазогревания веществ и матери лов (самовозгорание) и т.п. Выявлению имеющихся на производстве источников зажигания должно быть уделено особое внимание.

Характерные параметры источников зажигания принимаются:

Температура канала молнии - 30000°С при силе тока 200000 А и времен действия около 100 мкс. Энергия искрового разряда вторичного воздействия молнии превышает 250 мДж и достаточна для воспламенения горючих материалов минимальной энергией зажигания до 0,25 Дж. Энергия искровых разрядов при заносе высокого потенциала в здание по металлическим коммуникациям достигает значений 100 Дж и более, что достаточно для воспламенения всех горючих материалов.

Поливинилхлоридная изоляция электрического кабеля (провода) воспламеняется при кратности тока короткого замыкания более 2,5.

Температура сварочных частиц и никелевых частиц ламп накаливания достигает 2100°С. Температура капель при резке металла 1500°С. Температура дуги при сварке и резке достигает 4000°С.

Зона разлета частиц при коротком замыкании при высоте расположения провода 10 м колеблется от 5 (вероятность попадания 92%) до 9 (вероятное попадания 6%) м; при расположении провода на высоте 3 м - от 4 (96%) до 8 (1%); при расположении на высоте 1 м - от 3 (99%) до 6 м (6%).

Максимальная температура, "С, на колбе электрической лампочки накаливания зависит от мощности, Вт: 25 Вт - 100°С; 40 Вт - 150°С; 75 Вт - 25 100 Вт - 300°С; 150 Вт - 340°С; 200 Вт - 320°С; 750 Вт - 370°С.

Искры статического электричества, образующегося при работе людей с движущимися диэлектрическими материалами, достигают величин от 2,5 до 7,5 мДж.

Температура пламени (тления) и время горения (тления), °С (мин), некоторых малокалорийных источников тепла: тлеющая папироса - 320-410 (2-2,5); тлеющая сигарета - 420-460 (26-30); горящая спичка - 620-640 (0,33).

Для искр печных труб, котельных, труб паровозов и тепловозов, а также других машин, костров установлено, что искра диаметром 2 мм пожароопасна, если имеет температуру около 1000°С, диаметром 3 мм - 800°С, диаметром 5 мм - 600 градусов.

Самовозгорание

Самовозгорание присуще многим горючим веществам и материалам. Это отличительная особенность данной группы материалов.

Самовозгорание бывает следующих видов: тепловое, химическое, микробиологическое.

Тепловое самовозгорание выражается в аккумуляции материалом тепла, в процессе которого происходит самонагревание материала. Температура самонагревания вещества или материала является показателем его пожароопасности. Для большинства горючих материалов этот показатель лежит в пределах от 80 до 150°С: бумага - 100°С; войлок строительный - 80°С; дерматин - 40°С; древесина: сосновая - 80, дубовая 100, еловая - 120°С; хлопок-сырец - 60°С. Продолжительное тление до начала пламенного горения является отличительной характеристикой процессов теплового самовозгорания. Дан­ные процессы обнаруживаются по длительному и устойчивому запаху тлею­щего материала.

Химическое самовозгорание сразу проявляется в пламенном горе­нии. Для органических веществ данный вид самовозгорания происходит при контакте с кислотами (азотной, серной), растительными и техниче­скими маслами. Масла и жиры, в свою очередь, способны к самовозгора­нию в среде кислорода. Неорганические вещества способны самовозго­раться при контакте с водой (например, гидросульфит натрия). Спирты самовозгораются при контакте с перманганатом калия. Аммиачная селит­ра самовозгорается при контакте с суперфосфатом и пр.

Микробиологическое самовозгорание связано с выделением тепло­вой энергии микроорганизмами в процессе жизнедеятельности в питатель­ной для них среде (сено, торф, древесные опилки и т.п.).

На практике чаще всего проявляются комбинированные процессы самовозгорания: тепловые и химические.

Условия распространения пожара.

Развитие пожара зависит от многих факторов: физико-химических свойств горящего материала; пожарной нагрузки, под которой понимается масса всех горючих и трудногорючих материалов, находящихся в горящем помещении; скорости выгорания пожарной нагрузки; газообмена очага по­жара с окружающей средой и с внешней атмосферой и т.п.

В зависимости от средней скорости выгорания веществ и материа­лов развитие пожара может принимать ту или иную динамику.

Пример бензин выгорает со скоростью 61,7-10 3 ; дизельное топливо - 42,0-10 3 ; мебель в жилых и административ­ных зданиях влажностью 8-10% - 14,0-10 3 ; книги, журналы - 4,2-10 3 ; резина - 11,2-Ю 3 ; хлопок+капрон (3:1) - 12,5-10 3 кг/(м 2 -с).

В источниках приводятся общие схемы развития пожара, которые включают несколько основных фаз (экспериментальные дан­ные для помещения размером 5x4x3 м, отношением площади оконного про­ема и площади пола 25%, пожарной нагрузкой 50 кг/м 2 - древесные бруски):

I фаза (10 мин) - начальная стадия, включающая переход возгора­ния в пожар (1-3 мин) и рост зоны горения (5-6*мин). В течение первой фазы происходит преимущественно линейное распростра­нение огня вдоль горючего вещества или материала. Горение сопровождается обиль­ным дымовыделением, что затрудняет определение места очага пожара. Среднеобъемная температура повышается в помещении до 200°С (темп увеличения среднеобъемной температуры в помещении 15°С в 1 мин). Приток воздуха в помещение увеличивается. Поэтому очень важно в это время обеспечить изоляцию помещения от наружного воздуха (не рекомендуется открывать или вскрывать окна и двери в горящее помещение. В некоторых случаях, при достаточном обеспечении герме­тичности помещения, наступает самозатухание пожара) и вызвать пожарные подразделения. Если очаг пожара виден, необходимо по возможности принять меры тушению пожара первичными средствами пожаротушения.

Продолжительность I фазы составляет 2-30% продолжительности пожара

II фаза (30-40 мин) - стадия объемного развития пожара.

Бурный процесс, температура внутри помещения поднимается до 250-300° начинается объемное развитие пожара, когда пламя заполняет весь объем помещения, и процесс распространения пламени происходит уже не поверхностно, дистанционно, через воздушные разрывы. Разрушение остекления через 15-20 ми от начала пожара. Из-за разрушения остекления приток свежего воздуха резко увеличивает развитие пожара. Темп увеличения среднеобъемной температуры - до 50°С в 1 мин. Температура внутри помещения повышается с 500-600 до 800 - 900°С. Максимальная скорость выгорания, - 10-12 мин.

Стабилизация пожара происходит на 20-25 минуте от начала пожара и продолжается 20-30 мин.

III фаза - затухающая стадия пожара.

Догорание в виде медленного тления.

Температурное поле внутреннего пожара неравномерно в объем помещения. Так, по данным, при горении бензина на площади 2 в помещении объемом 100 м 3 на 15 минуте в зоне горения температур составила 900°С, а в самой удаленной точке 200°С. При этом у потолка температура достигала 800°С и более, по центру высоты помещения 500°С, у пола - 200°С.

Нагретые продукты горения преимущественно концентрируются верхней части помещения, что особенно характерно для помещений высокими потолками. Поэтому в условиях задымленного помещения наилучшая видимость и соответственно наименьшая концентрация отравляющих веществ у припольного пространства.

Исходя из анализа динамики развития пожара, необходимо сделать некоторые выводы:

1. Автоматические системы пожарной сигнализации и тушения пожара должны сработать в начале 1-й фазы развития пожара. В этой фазе пожар еще не достиг максимальной интенсивности развития.

При отсутствии автоматических систем сигнализации о пожаре время сообщения в пожарную охрану значительно увеличивается, в том числе безуспешными попытками ликвидировать возгорание без вызова пожарной охраны первичными средствами пожаротушения.

2. Тушение пожара подразделениями пожарной охраны начинается, как правило, через 10-15 мин после извещения о пожаре, т.е. через 20 мин после его возникновения (3-5 мин до срабатывания системы сигнализации о пожаре; 5-10 мин - следование на пожар; 3-5 мин - подготовка к тушению пожара). К этому моменту пожар принимает объемную форму развития и максимальную интенсивность.

В зависимости от характеристики горючей среды или горящего объекта пожары подразделяются на следующие классы и подклассы:

7 | | | | | | | | | | | |

Системы предотвращения пожара

Целью создания систем предотвращения пожаров является исключение условий возникновения пожаров. Исключение условий возникновения пожаров достигается исключением условий образования горючей среды и (или) исключением условий образования в горючей среде (или внесения в нее) источников зажигания.

Определения и термины

Пожар - неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Горение - это физико-химический процесс, сопровождающийся выделением тепла, света и продуктов сгорания (дыма). Приближенно можно описать природу горения как бурно идущее окисление .

Для того, чтобы произошло возгорание, необходимо наличие трех условий (так называемый Пожарный треугольник ):

Горючая среда.

Источник зажигания - открытый огонь, химическая реакция, электроток.

Наличие окислителя, например, кислорода воздуха.

Сущность горения заключается в следующем: нагревание источников зажигания горючего материала до начала его теплового разложения. В процессе теплового разложения образуется угарный газ, вода и большое количество тепла. Выделяются также углекислый газ и сажа, которая оседает на окружающем рельефе местности. Время от начала зажигания горючего материала до его воспламенения называется временем воспламенения.

К опасным факторам пожара, воздействующим на людей и имущество, относятся:

1) пламя и искры;

2) тепловой поток;

3) повышенная температура окружающей среды;

4) повышенная концентрация токсичных продуктов горения и термического разложения;

6) снижение видимости в дыму.

К сопутствующим проявлениям опасных факторов пожара относятся:

1) осколки, части разрушившихся зданий, сооружений, строений, транспортных средств, технологических установок, оборудования, агрегатов, изделий и иного имущества;

2) радиоактивные и токсичные вещества и материалы, попавшие в окружающую среду из разрушенных технологических установок, оборудования, агрегатов, изделий и иного имущества;

3) вынос высокого напряжения на токопроводящие части технологических установок, оборудования, агрегатов, изделий и иного имущества;

применение устройств, исключающих возможность распространения пламени из одного объема в смежный.

Безопасные значения параметров источников зажигания определяются условиями проведения технологического процесса на основании показателей пожарной опасности обращающихся в нем веществ и материалов, определенных в статье 11 федерального закона № 123-ФЗ.

Системы и средства противопожарной защиты объектов ТГУ.

Защита людей и имущества от воздействия опасных факторов пожара и (или) ограничение последствий их воздействия обеспечиваются одним или несколькими из следующих способов:

1) применение объемно-планировочных решений и средств, обеспечивающих ограничение распространения пожара за пределы очага;

2) устройство эвакуационных путей, удовлетворяющих требованиям безопасной эвакуации людей при пожаре;

Для обеспечения безопасной эвакуации людей должны быть:

а) установлены необходимое количество, размеры и соответствующее конструктивное исполнение эвакуационных путей и эвакуационных выходов;

б) обеспечено беспрепятственное движение людей по эвакуационным путям и через эвакуационные выходы;

в) организованы оповещение и управление движением людей по эвакуационным путям (в том числе с использованием световых указателей, звукового и речевого оповещения).

В связи с чем, при эксплуатации эвакуационных путей и выходов запрещается:

Производить изменения объемно-планировочных решений, в результате которых ухудшаются условия безопасной эвакуации людей;

Загромождать эвакуационные пути и выходы (в том числе проходы, коридоры, тамбуры, галереи, лифтовые холлы, лестничные площадки, марши лестниц, двери, эвакуационные люки) различными материалами, изделиями, оборудованием, производственными отходами, мусором и другими предметами, а также забивать двери эвакуационных выходов;

Устраивать в тамбурах выходов сушилки и вешалки для одежды, гардеробы, а также хранить (в том числе временно) инвентарь и материалы;

Устраивать на путях эвакуации пороги (за исключением порогов в дверных проемах), раздвижные и подъемно-опускные двери и ворота, вращающиеся двери и турникеты, а также другие устройства, препятствующие свободной эвакуации людей;

Применять горючие материалы для отделки, облицовки и окраски стен и потолков, а также ступеней и лестничных площадок на путях эвакуации (кроме зданий V степени огнестойкости);

Фиксировать самозакрывающиеся двери лестничных клеток, коридоров, холлов и тамбуров в открытом положении , а также снимать их;

Остеклять или закрывать жалюзи воздушных зон в незадымляемых лестничных клетках;

Заменять армированное стекло обычным в остеклении дверей и фрамуг;

Снимать предусмотренные проектом двери эвакуационных выходов из поэтажных коридоров, холлов, фойе, тамбуров и лестничных клеток, другие двери, препятствующие распространению опасных факторов пожара на путях эвакуации;

Загромождать мебелью, оборудованием и другими предметами двери, люки на балконах и лоджиях, переходы в смежные секции и выходы на наружные эвакуационные лестницы;

Остеклять балконы, лоджии и галереи, ведущие к незадымляемым лестничным клеткам;

Устраивать в лестничных клетках и поэтажных коридорах кладовые (чуланы), также хранить под лестничными маршами и на лестничных площадках вещи, мебель и другие горючие материалы.

Двери на путях эвакуации должны открываться свободно и по направлению выхода из здания, а запоры на дверях эвакуационных выходов должны обеспечивать людям, находящимся внутри здания (сооружения), возможность свободного открывания запоров изнутри без ключа.

3) оборудование зданий системами обнаружения пожара (установками и системами пожарной сигнализации), оповещения и управления эвакуацией людей при пожаре ;

В связи с чем:

Установки пожарной автоматики (АУПС, СОУЭ) должны всегда находиться в исправном состоянии и постоянной готовности (перевод установок с автоматического пуска на ручной не допускается);

Объемные самосветящиеся знаки пожарной безопасности с автономным питанием и от электросети, используемые на путях эвакуации (в том числе световые указатели “Эвакуационный (запасный) выход”, “Дверь эвакуационного выхода”), должны постоянно находиться в исправном и включенном состоянии;

Для управления эвакуацией необходимо использовать знаки пожарной безопасности

Регламентные работы по техническому обслуживанию и планово-предупредительному ремонту (ТО и ППР) автоматических установок пожарной сигнализации и пожаротушения, систем противодымной зашиты, оповещения людей о пожаре и управления эвакуацией осуществляются в соответствии с годовым планом-графиком, составляемым с учетом технической документации заводов-изготовителей сроками проведения ремонтных работ. ТО и ППР выполняет специализированная организациия, имеющей лицензию, по договору.

4) применение систем коллективной защиты (в том числе противодымной) и средств индивидуальной защиты людей от воздействия опасных факторов пожара;

5) применение основных строительных конструкций с пределами огнестойкости и классами пожарной опасности, соответствующими требуемым степени огнестойкости и классу конструктивной пожарной опасности зданий, сооружений и строений, а также с ограничением пожарной опасности поверхностных слоев (отделок, облицовок и средств огнезащиты) строительных конструкций на путях эвакуации;

6) применение огнезащитных составов (в том числе антипиренов и огнезащитных красок) и строительных материалов (облицовок) для повышения пределов огнестойкости строительных конструкций;

7) устройство аварийного слива пожароопасных жидкостей и аварийного стравливания горючих газов из аппаратуры;

8) устройство на технологическом оборудовании систем противовзрывной защиты;

9) применение первичных средств пожаротушения;

10) применение автоматических установок пожаротушения;

11) организация деятельности подразделений пожарной охраны.