Чему равна степень окисления азота. Азот и его соединения

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.

Чтобы правильно расставлять степени окисления , необходимо держать в голове четыре правила.

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Следует запомнить элементы, для которых характерны постоянные степени окисления . Все они перечислены в таблице.


3) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (например, фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

4) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.

Несколько простых примеров на определение степеней окисления

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3 (+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2 (+1) + х + 4 (-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1 (+3) + 3х + 9 (-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4 (-2) = -3. Ответ: As(+5), O(-2).

Что делать, если неизвестны степени окисления двух элементов

А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.

Как расставлять степени окисления в органических соединениях

Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Не смешивайте понятия "валентность" и "степень окисления"!

Степень окисления часто путают с валентностью . Не совершайте подобной ошибки. Перечислю основные отличия:

  • степень окисления имеет знак (+ или -), валентность - нет;
  • степень окисления может быть равна нулю даже в сложном веществе, равенство валентности нулю означает, как правило, что атом данного элемента не соединен с другими атомами (всякого рода соединения включения и прочую "экзотику" здесь обсуждать не будем);
  • степень окисления - формальное понятие, которое приобретает реальный смысл лишь в соединениях с ионными связями, понятие "валентность", наоборот, наиболее удобно применять по отношению к ковалентным соединениям.

Степень окисления (точнее, ее модуль) часто численно равен валентности, но еще чаще эти величины НЕ совпадают. Например, степень окисления углерода в CO 2 равна +4; валентность С также равна IV. А вот в метаноле (CH 3 OH) валентность углерода остается той же, а степень окисления С равна -1.

Небольшой тест на тему "Степень окисления"

Потратьте несколько минут, проверьте, как вы усвоили эту тему. Вам необходимо ответить на пять несложных вопросов. Успехов!

VА-подгруппу образуют р-элементы: азотN , фосфор

Р , мышьякAs , сурьмаSb и висмутBi .

Элементы N, P – типичные неметаллы,

у неметаллов As и Sb появляются некоторые свойства,

присущие металлам , у висмута металлические свойства

преобладают , хотя типичным металлом он не является.

Общая формула валентных электронов у элемен-

тов VА-группы –ns 2 np 3 .

трона . За счет трех неспаренных электроноввсе элементы в простых веществах образуют три ковалентные связи , но у азота три связи объединяют 2 атома, образуя очень проч-

ную молекулу N N, а у других элементов – каждый атом связан с тремя другими с образованием молекул типа Э4 (бе-

лый фосфор и желтый мышьяк) или полимерных структур.

У азота простое вещество в любом агрегатном состоянии состоит из отдельных молекул, при обычных условиях это газ. У всех остальных элементов простые вещества

– твердые.

Степень окисления (–3) для элементов VА-группы является минимальной.Наиболее устойчива она у N , при

переходе к Bi с увеличением числа электронных слоев ее устойчивость па-

дает. Элементы N, P, As, Sb с водородом образуют гидриды типа ЭН3 ,

проявляющие основные свойства , наиболее ярко они выражены у аммиа-

Исполнитель:

Мероприятие №

ка NH3 . В подгруппе устойчивость соединений ЭН3 и их основные свойст-

ва уменьшаются.

Все элементы VА-группы проявляют высшую степень окисления +5.

Все они образуют оксиды типа Э2 O5 (оксид Bi 2 О 5 – неустойчив) , которым соответствуют кислоты,сила кислот ослабевает при движении вниз по под-

Степень окисления +5 наиболее устойчива у Р. Соединения Bi(+5) –

очень сильные окислители. Сильные окислительные свойства проявляет азотная кислота, особенно концентрированная.

У висмута более устойчива степень окисления (+3), которая также достаточно устойчива у Sb и As. Соединения N(+3), и особенно

Р(+3), проявляют сильные восстановительные свойства.

В степени окисления +3 все элементы VА-группы образуют оксиды

типа Э 2 О 3 . Оксидам N и P соответствуют слабые кислоты. Оксиды и гидрокси-

ды As и Sb – амфотерны, основной характер преобладает у оксида и гидрокси-

да Bi(+3). Таким образом , в подгруппе кислотный характер оксидов и гид-

роксидов элементов в степени окисления (+3) ослабевает, и усиливаются

основные свойства, более характерные для гидроксидов металлов.

Элементы VА-группы, помимо перечисленных степеней окисления

5, +3, –3, проявляют и другие промежуточные степени окисления.

Для азота известны все степени окисления от –1 до +5.

Азот, как и все элементы второго периода, существенно отличается от своих электронных аналогов. По этой причине, а также из-за большого числа степеней окисления и многообразия соединений, химия азота рассматри-

вается отдельно от других элементов VА–подгруппы.

Наиболее распространенным в природе элементом VА-группы явля-

ется фосфор. Его содержание в земной коре – 0,09 масс. %; фосфор находит-

ся главным образом в виде фосфата кальция. Содержание азота – 0,03%, ос-

новная его доля сосредоточена в атмосфере в виде N2 .Содержание азота в

Исполнитель:

Мероприятие №

воздухе по объему составляет ~ 78 %. В очень малых количествах в зем-

ной коре встречаются нитраты натрия и калия (селитры). Мышьяк, сурьма и висмут относятся к редким элементам с содержанием в земной коре 10–5 5. 10–

4 %; в природе они находятся, в основном, в виде сульфидов.

Азот и фосфор – очень важные элементы биосферы, поэтому значи-

тельная часть производимых в химической промышленности нитратов и фос-

фатов используется в качестве удобрений, которые необходимы для жизнедея-

тельности растений. В организме человека N и Р играют важную роль, – азот

входит в состав аминокислот, являющихся составной частью белков, фосфор в

форме Ca5 [(PO4 )3 OH] входит в состав костей. В человеческом организме нахо-

дится в среднем около 1,8 кг N.

Некоторые характеристики атомов элементов VА-группы приведены в

Важнейшие характеристики атомов элементов VА-группы

Электроот-

рицатель-

ность (по

атома, нм

Поллингу)

увеличение числа элек-

тронных слоев;

увеличение размера атома;

уменьшение энергии иони-

уменьшение электроотри-

цательности;

Для сравнения – электроотрицательность Н – 2,2; О – 3,44 .

Азот от других элементов подгруппы отличается очень маленьким орби-

тальным радиусом и высокой электроотрицательностью, N – третий по элек-

троотрицательности элемент, после F и О.

Исполнитель:

Мероприятие №

Валентные электроны N –2s2 2p3 .

N 2s

Азот, подобно другим элементам второго периода,

заметно отличается от элементов своей подгруппы:

атом N имеет всего 4 валентные орбитали и в соединениях может обра-

зовать только 4 ковалентные связи;

из-за очень маленького атомного радиуса азот образует очень прочные

простое вещество в любом агрегатном состоянии состоит из отдельных

очень прочных молекул N

N и отличается высокой инертностью;

по электроотрицательности N уступает только F и О;

азот проявляет все возможные степени окисления: -3, –2, -1, 0, +1, +2, +3, +4, +5.

Большое число степеней окисления и многообразие соединений делает

химию азота весьма сложной. Сложность усугубляется также характерными для многих окислительно-восстановительных реакций кинетическими затруд-

нениями, обусловленными очень прочными кратными связями между атомами

N и атомами N и О. Поэтому электродные потенциалы мало помогают в опре-

делении продуктов ОВР.

Наиболее устойчивым соединением N является простое вещество.

В водных растворах, особенно кислых, очень устойчив ион NH4 + .

Азот является составной частью воздуха, из которого N 2 и получают.

Основное количество N2 используется для синтеза аммиака, из которого затем получают другие соединения азота.Среди соединений азота самое широкое практическое применение находят аммиак, азотная кислота и их соли .

Исполнитель:

Мероприятие №

Ежегодное мировое производство NH3 составляет ~ 97 млн. т/год, азотной ки-

слоты – 27 млн. т/год. Химия этих важнейших соединений N будет рассмот-

рена в первую очередь, после обсуждения свойств простого вещества.

Простое вещество

Молекула N2 – самая прочная из всех двухатомных молекул простых веществ.Три общие электронные пары в молекуле N N располагаются на свя-

зывающих орбиталях, на разрыхляющих орбиталях электронов нет, – это при-

водит к очень высокой энергии химической связи – 944 кДж/моль (для срав-

нения, энергия связи в молекуле О2 равна – 495 кДж/моль).Прочная связь обусловливает высокую инертность молекулярного азота . С химической инертностью азота связано название этого элемента. По-гречески «азот» озна-

чает "безжизненный".

При обычных условиях N2 – это бесцветный газ без запаха и вкуса.

Температуры кипения и плавления N2 близки: –196О С, и –210О С.

Азот получают фракционной перегонкой воздуха, – для этого воздух

при низких температурах сжижают, а затем начинают повышать температуру.

Из компонентов воздуха азот имеет самую низкую температуру кипения и

образует самую легкокипящую фракцию. При фракционной перегонке одно-

временно получают кислород и инертные газы.

Основное количество N2 идет на производство аммиака, кроме того,

азот применяют для создания инертной атмосферы, в том числе при производ-

стве некоторых металлов; жидкий азот используют также в качестве охлаж-

дающего агента в лаборатории и в промышленности.

При комнатной температуре азот медленно реагирует только с Li с обра-

зованием Li3 N. При горении на воздухе магния, вместе с оксидом MgO образу-

ется и Mg3 N2 .

Нитриды. Бинарные соединения азота с элементами, менее элек-

троотрицательными, чем N, называют нитридами.

Исполнитель:

Мероприятие №

Ионные нитриды содержат анион N3– . Ионные нитриды образуют Li,

металлы II и IБ-группы ; в водных растворах они подвергаются необратимо-

му гидролизу.

Mg3 N2 + 6H2 O = 2NH3 + 3 Mg(OH)2

С металлами р-блока и некоторыми легкими неметаллами азот об-

разует ковалентные нитриды, например, AlN, BN.

Большинство d-металлов образуют с азотом при высоких температурах нестехиометрические продукты внедрения, в которых атомы N занимают пус-

тоты в кристаллических решетках металлов. Поэтому такие нитриды по внеш-

нему виду, по электро- и теплопроводности напоминают металлы, но отлича-

ются от них высокой химической инертностью, твердостью и тугоплавкостью.

Например, нестехиометрические нитриды Ta и Ti плавятся при температурах выше 3200о С.

Азот непосредственно не реагирует с галогенами, а с кислородом взаимодействует только в экстремальных условиях (при электрическом

разряде).

Наиболее важной в практическом отношении является реакция азота с H2 , в результате которой получается аммиак.

N 2 + 3H 2  2NH 3 ; H0 = –92 кДж/моль.

Экзотермичность этой реакции указывает на то, что суммарная прочность связей в молекулах аммиака выше, чем в исходных молекулах. Повышение температуры в соответствии с принципом Ле-Шателье, приводит к смещению равновесия в сторону эндотермической реакции, т.е. в направлении разложения аммиака. Однако при нормальных условиях реакция идет чрезвычайно медлен-

но, слишком велика энергия активации, необходимая для ослабления прочных связей в молекулах азота и водорода. Процесс поэтому процесс приходится вести при температуре около 5000 С. Для смещения равновесия при высокой температуре вправо повышают давление до 300 – 500 атм., при этом равнове-

Исполнитель:

Мероприятие №

сие смещается в направлении реакции, идущей с уменьшением числа молекул газа, т.е. в направление образования аммиака. Повышения скорости достигают за счет применения катализаторов. Эффективен плавленый катализатор на ос-

нове Fe3 O4 с добавками Al2 O3 и SiO2 и катализатор на основе металлического

Fe. Синтез аммиака из азота и водорода является важнейшей реакцией про-

мышленной химии азота.

Соединения азота

Аммиак и соли аммония

Азот в аммиаке и солях аммония находится в минимальной степени окисления (–3). Степень окисления (–3) достаточно устойчива у азота.

Аммиак при обычных условиях – бесцветный газ с характер-

ным резким запахом , знакомым по запаху «нашатырного спирта» (10% рас-

твора аммиака в воде). Этот газ легче воздуха, поэтому его можно собирать в перевернутые вверх дном сосуды. Аммиак легко переходит в жидкость. Для этого его достаточно при обычном давлении охладить до –33,5о С. Того же эф-

фекта можно достигнуть при комнатной температуре, но повышая давление до

7 – 8 атм. При повышенном давлении жидкий аммиак хранят в стальных балло-

нах. Испаряясь, жидкий аммиак вызывает охлаждение в окружающей среде. На этом основано его применение в холодильной технике. Легкая сжижаемость аммиака обусловлена водородными связями между его молекулами. Прочность водородных связей между молекулами аммиака обусловлена очень высокой электроотрицательностью азота.

Жидкий аммиак бесцветен, подвергается автопротолизу:

2NH3  NH4 + + NH2 –

Константа этого равновесия равна 2 . 10– 23 (при –50о С). Жидкий аммиак

является хорошим ионизирующим растворителем. Соли аммония и слабые

кислоты, например, H2 S, растворенные в жидком аммиаке, становятся сильны-

ми кислотами.

Исполнитель:

Мероприятие №

Аммиак хорошо растворим в воде . Высокую растворимость аммиака в воде (до 700 объемов NH3 в одном объеме воды) также объясняют образовани-

ем водородных связей, но уже с молекулами воды. Концентрированный рас-

твор содержит 25 массовых % аммиака и имеет плотность 0,91 г/см3 . Молярная концентрация NH3 в концентрированных водных растворах достигает ~13

Молекула NH3 имеет пирамидальное строение, которое объясняют sp3 -

гибридизацией валентных атомных орбиталей азота. Одна из вершин тетраэд-

ра занята неподеленной парой электронов. Связь N –– H довольно прочная,

энергия связи составляет 389 кДж/моль, длина связи – 0,1 нм, угол между свя-

зями –108,3о . При присоединении катиона H+ за счет неподеленной электрон-

ной пары N, образуется тетраэдрический очень устойчивый ион аммония

NH4 + .

Наличие неподеленной электронной пары у N в молекуле NH3 , обу-

славливает многие характерные для аммиака свойства.

Молекула NH3 является хорошим донором электронной пары(ДЭП),

т.е. основанием по Льюису, и очень хорошим акцептором протонов A(Н+ ),

т.е. основанием по Бренстеду:

NH3 + H+  NH4 + . NH3 акцептирует протон, подобно ионам ОН– : OH– + H+  H2 O

Акцепторные свойства NH3 слабее, чем у аниона OH– . Константа протолиза для NH3 равна 1,8. 109 , а для иона OH– – 1014 .

Реакции с кислотами – это наиболее характерные для NH3 реакции.

Способность аммиака к образованию донорно-акцепторных связей на-

столько велика, что он может отрывать ионы водорода от такого прочного со-

единения, как вода.

NH3 + H–– OH  NH4 + ), и количество продуктов NH4 + и OH– мало по сравнению с равновесной концентрацией аммиака. Водные растворы аммиака ведут себя подобно слабым основаниям. По устоявшейся традиции аммиак часто обозна-

чают формулой NH4 OH и называют гидроксидом аммония, однако молекул

NH4 OH в растворе нет. Щелочную реакцию водного раствора NH3 часто опи-

сывают не приведенным выше равновесием, а как диссоциацию молекул

NH4 OH:

NH4 OH NH4 + + OH–

Константа этого равновесия равна 1,8 . 10–5 . В одном литре одномолярно-

го раствора аммиака концентрация ионов NH4 + и OH– составляет 3,9. 10–3

моль/л, рН = 11,6.

Равновесие между аммиаком и OH– способны сильно сместить вправо катионы некоторых металлов, образующие с ионами OH– нерастворимые гидроксиды.

FeCl3 + 3NH3 + 3Н–ОН  Fe(OH)3  + 3NH4 Cl.

Аммиак можно использовать для получения нерастворимых оснований .

При действии кислот на водные растворы аммиака образуются соли аммония.

NH3 + HCl = NH4 Cl

Почти все соли аммония бесцветны и растворимы в воде.

Равновесие NH3 + H+  NH4 + сильно смещено вправо (К = 1,8. 109 ),

это означает, что, NH3 является сильным акцептором протонов, а катион NH 4 +

является слабым донором H + , т.е. кислотой по Бренстеду. При добавлении щелочи к солям аммония образуется аммиак, который легко определить по за-

NH4 Cl + NaOH = NH3 + H2 O + NaCl.

Этой реакцией обычно пользуются для обнаружения ионов аммония в растворе.

Исполнитель:

Мероприятие №

Подобные реакции можно использовать для лабораторного получения

NH3 .

Хлорид аммония (его называют «нашатырь») при высоких температурах реагирует с оксидами на поверхности металлов, как кислота, обнажая чистый металл. На этом же основано использование твердой соли NH4 Cl при пайке металлов. «Кислотный» H+ из иона NH4 + способен окислять очень активные металлы, например, Mg.

Mg + 2NH4 Cl = H2 + MgCl2 + 2NH3

Характерным свойством солей аммония является их термическая неус-

тойчивость. При нагревании они довольно легко разлагаются. Продукты раз-

ложения определяются свойствами кислотного аниона. Если анион проявляет окислительные свойства, то происходит окисление NH4 + и восстановление аниона-окислителя.

NH4 NO2 = N2 + 2H2 O

NH4 NO3 = N2 О + 2H2 O или 2NH4 NO3 = N2 + O2 + 4H2 O

(NH4 )2 Cr2 O7 = N2 + Cr2 O3 + 4H2 O

Из солей летучих кислот выделяется аммиак и кислота (или ее ангид-

рид), а в случае нелетучих кислот (например, Н3 РО4 ) – только NH3 . NH4 HCO3 = NH3 + H2 O + CO2

Гидрокарбонат аммония NH4 HCO3 применяют в хлебопекарной про-

мышленности, образующиеся газы придают тесту необходимую пористость.

Соли аммония используют в производстве взрывчатых веществ и в

качестве азотных удобрений . Аммонал, применяемый в практике взрывных работ, представляет собой смесь соли NH4 NO3 (72%), порошка Al (25%) и уг-

ля (3%). Эта смесь взрывается только после детонации.

Второй тип реакций, в которых NH3 проявляет свойства донора элек-

тронной пары – это образование амминных комплексов. Аммиак в роли лиганда присоединяется к катионам многих d-элементов , образуя химиче-

Исполнитель:

Мероприятие №

Азот — элемент 2-го периода V А-группы Периодической системы, порядковый номер 7. Электронная формула атома [ 2 He]2s 2 2p 3 , характерные степени окисления 0,-3, +3 и +5, реже +2 и +4 и др. состояние N v считается относительно устойчивым.

Шкала степеней окисления у азота:
+5 — N 2 O 5 , NO 3 , NaNO 3 , AgNO 3

3 – N 2 O 3 , NO 2 , HNO 2 , NaNO 2 , NF 3

3 — NH 3 , NH 4 , NH 3 * H 2 O, NH 2 Cl, Li 3 N, Cl 3 N.

Азот обладает высокой электроотрицательностью (3,07), третий после F и O. Проявляет типичные неметаллические (кислотные) свойства, образуя при этом различные кислородсодержащие кислоты, соли и бинарные соединения, а так же катион аммония NH 4 и его соли.

В природе – семнадцатый по химической распространенности элемент (девятый среди неметаллов). Жизненно важный элемент для всех организмов.

N 2

Простое вещество. Состоит из неполярных молекул с очень устойчивой ˚σππ-связью N≡N, этим объясняется химическая инертность элемента при обычных условиях.

Бесцветный газ без вкуса и запаха, конденсируется в бесцветную жидкость (в отличие от O 2).

Главная составная часть воздуха 78,09% по объему, 75,52 по массе. Из жидкого воздуха азот выкипает раньше, чем кислород. Малорастворим в воде (15,4 мл/1 л H 2 O при 20 ˚C), растворимость азота меньше, чем у кислорода.

При комнатной температуре N 2 , реагирует с фтором и в очень малой степени – с кислородом:

N 2 + 3F 2 = 2NF 3 , N 2 + O 2 ↔ 2NO

Обратимая реакция получения аммиака протекает при температуре 200˚C, под давлением до 350 атм и обязательно в присутствии катализатора (Fe, F 2 O 3 , FeO, в лаборатории при Pt)

N 2 + 3H 2 ↔ 2NH 3 + 92 кДж

В соответствии с принципом Ле-Шателье увеличение выхода аммиака должно происходить при повышении давления и понижении температуры. Однако скорость реакции при низких температурах очень мала, поэтому процесс ведут при 450-500 ˚C, достигая 15%-ного выхода аммиака. Непрориагировавшие N 2 и H 2 возвращают в реактор и тем самым увеличивают степень протекания реакции.

Азот химически пассивен по отношению к кислотам и щелочам, не поддерживает горения.

Получение в промышленности – фракционная дистилляция жидкого воздуха или удаление из воздуха кислорода химическим путем, например по реакции 2C(кокс) + O 2 = 2CO при нагревании. В этих случаях получают азот, содержащий так же примеси благородных газов (главным образом аргон).

В лаборатории небольшие количества химически чистого азота можно получить по реакции конмутации при умеренном нагревании:

N -3 H 4 N 3 O 2(T) = N 2 0 + 2H 2 O (60-70)

NH 4 Cl(p) + KNO 2 (p) = N 2 0 + KCl +2H 2 O (100˚C)

Применяется для синтеза аммиака. Азотной кислоты и других азотсодержащих продуктов, как инертная среда проведения химических и металлургических процессов и хранения огнеопасных веществ.

NH 3

Бинарное соединение, степень окисления азота равна – 3. Бесцветный газ с резким характерным запахом. Молекула имеет строение незавершенного тетраэдра [: N(H) 3 ] (sp 3 -гибридизация). Наличие у азота в молекуле NH 3 донорской пары электронов на sp 3 -гибридной орбитали обуславливает характерную реакцию присоединения катиона водорода, при этом образуется катион аммония NH 4 . Сжижается под избыточным давлением при комнатной температуре. В жидком состоянии ассоциирован за счет водородных связей. Термически неустойчив. Хорошо растворим в воде (более 700 л/1 л H 2 O при 20˚C); доля в насыщенном растворе равна 34% по массе и 99% по объему, pH= 11,8.

Весьма реакционноспособный, склонен к реакциям присоединения. Сгорает в кислороде, реагирует с кислотами. Проявляет восстановительные (за счет N -3) и окислительные (за счет H +1) свойства. Осушается только оксидом кальция.

Качественные реакцииобразование белого «дыма» при контакте с газообразным HCl, почернение бумажки, смоченной раствором Hg 2 (NO3) 2 .

Промежуточный продукт при синтезе HNO 3 и солей аммония. Применяется в производстве соды, азотных удобрений, красителей, взрывчатых веществ; жидкий аммиак – хладагент. Ядовит.
Уравнения важнейших реакций:

2NH 3(г) ↔ N 2 + 3H 2
NH 3(г) + H 2 O ↔ NH 3 * H 2 O (р) ↔ NH 4 + + OH —
NH 3(г) + HCl (г) ↔ NH 4 Cl (г) белый «дым»
4NH 3 + 3O 2 (воздух) = 2N 2 + 6 H 2 O (сгорание)
4NH 3 + 5O 2 = 4NO+ 6 H 2 O (800˚C, кат. Pt/Rh)
2 NH 3 + 3CuO = 3Cu + N 2 + 3 H 2 O (500˚C)
2 NH 3 + 3Mg = Mg 3 N 2 +3 H 2 (600 ˚C)
NH 3(г) + CO 2(г) + H 2 O = NH 4 HCO 3 (комнатная температура, давление)
Получение. В лаборатории – вытеснение аммиака из солей аммония при нагревании с натронной известью: Ca(OH) 2 + 2NH 4 Cl = CaCl 2 + 2H 2 O +NH 3
Или кипячение водного раствора аммиака с последующим осушением газа.
В промышленности аммиак получают из азота с водородом. Выпускается промышленностью либо в сжиженном виде, либо в виде концентрированного водного раствора под техническим названием аммиачная вода .



Гидрат аммиака NH 3 * H 2 O . Межмолекулярное соединение. Белый, в кристаллической решетке – молекулы NH 3 и H 2 O, связанные слабой водородной связью. Присутствует в водном растворе аммиака, слабое основание (продукты диссоциации – катион NH 4 и анион OH). Катион аммония имеет правильно-тетраэдрическое строение (sp 3 -гибридизация). Термически неустойчив, полностью разлагается при кипячении раствора. Нейтрализуется сильными кислотами. Проявляет восстановительные свойства (за счет N -3) в концентрированном растворе. Вступает в реакцию ионного обмена и комплексообразования.

Качественная реакция – образование белого «дыма» при контакте с газообразным HCl. Применяется для создания слабощелочной среды в растворе, при осаждении амфотерных гидроксидов.
В 1 М растворе аммиака содержится в основном гидрат NH 3 *H 2 O и лишь 0,4% ионов NH 4 OH (за счет диссоциации гидрата); таким образом, ионный «гидроксид аммония NH 4 OH» практически не содержится в растворе, нет такого соединения и в твердом гидрате.
Уравнения важнейших реакций:
NH 3 H 2 O (конц.) = NH 3 + H 2 O (кипячение с NaOH)
NH 3 H 2 O + HCl (разб.) = NH 4 Cl + H 2 O
3(NH 3 H 2 O) (конц.) + CrCl 3 = Cr(OH) 3 ↓ + 3 NH 4 Cl
8(NH 3 H 2 O) (конц.) + 3Br 2(p) = N 2 + 6 NH 4 Br + 8H 2 O (40-50˚C)
2(NH 3 H 2 O) (конц.) + 2KMnO 4 = N 2 + 2MnO 2 ↓ + 4H 2 O + 2KOH
4(NH 3 H 2 O) (конц.) + Ag 2 O = 2OH + 3H 2 O
4(NH 3 H 2 O) (конц.) + Cu(OH) 2 + (OH) 2 + 4H 2 O
6(NH 3 H 2 O) (конц.) + NiCl 2 = Cl 2 + 6H 2 O
Разбавленный раствор аммиака (3-10%-ный) часто называют нашатырным спиртом (название придумано алхимиками), а концентрированный раствор (18,5 – 25%-ный) – аммиачный раствор (выпускается промышленностью).

Оксиды азота

Монооксид азота NO

Несолеобразующий оксид. Бесцветный газ. Радикал, содержит ковалентную σπ-связь (N꞊O) , в твердом состоянии димер N 2 О 2 со связью N-N. Чрезвычайно термически устойчив. Чувствителен к кислороду воздуха (буреет). Малорастворим в воде и не реагирует с ней. Химически пассивен по отношению к кислотам и щелочам. При нагревании реагирует с металлами и неметаллами. весьма реакционноспособная смесь NO и NO 2 («нитрозные газы»). Промежуточный продукт в синтезе азотной кислоты.
Уравнения важнейших реакций:
2NO + O 2 (изб.) = 2NO 2 (20˚C)
2NO + C(графит) = N 2 + CО 2 (400- 500˚C)
10NO + 4P(красный) = 5N 2 + 2P 2 O 5 (150- 200˚C)
2NO + 4Cu = N 2 + 2 Cu 2 O (500- 600˚C)
Реакции на смеси NO и NO 2:
NO + NO 2 +H 2 O = 2HNO 2 (p)
NO + NO 2 + 2KOH(разб.) = 2KNO 2 + H 2 O
NO + NO 2 + Na 2 CO 3 = 2Na 2 NO 2 + CО 2 (450- 500˚C)
Получение в промышленности : окисление аммиака кислородом на катализаторе, в лаборатории — взаимодействие разбавленной азотной кислоты с восстановителями:
8HNO 3 + 6Hg = 3Hg 2 (NO 3) 2 + 2NO + 4 H 2 O
или восстановлении нитратов:
2NaNO 2 + 2H 2 SO 4 + 2NaI = 2NO + I 2 ↓ + 2 H 2 O + 2Na 2 SO 4


Диоксид азота NO 2

Кислотный оксид, условно отвечает двум кислотам — HNO 2 и HNO 3 (кислота для N 4 не существует). Бурый газ, при комнатной температуре мономер NO 2 , на холоду жидкий бесцветный димер N 2 О 4 (тетраоксид диазота). Полностью реагирует с водой, щелочами. Очень сильный окислитель, вызывает коррозию металлов. Применяется для синтеза азотной кислоты и безводных нитратов, как окислитель ракетного топлива, очиститель нефти от серы и катализатор окисления органических соединений. Ядовит.
Уравнение важнейших реакций:
2NO 2 ↔ 2NO + O 2
4NO 2 (ж) + H 2 O = 2HNO 3 + N 2 О 3 (син.) (на холоду)
3 NO 2 + H 2 O = 3HNO 3 + NO
2NO 2 + 2NaOH(разб.) = NaNO 2 + NaNO 3 + H 2 O
4NO 2 + O 2 + 2 H 2 O = 4 HNO 3
4NO 2 + O 2 + KOH = KNO 3 + 2 H 2 O
2NO 2 + 7H 2 = 2NH 3 + 4 H 2 O (кат. Pt, Ni)
NO 2 + 2HI(p) = NO + I 2 ↓ + H 2 O
NO 2 + H 2 O + SO 2 = H 2 SO 4 + NO (50- 60˚C)
NO 2 + K = KNO 2
6NO 2 + Bi(NO 3) 3 + 3NO (70- 110˚C)
Получение: в промышленности — окислением NO кислородом воздуха, в лаборатории – взаимодействие концентрированной азотной кислоты с восстановителями:
6HNO 3 (конц.,гор.) + S = H 2 SO 4 + 6NO 2 + 2H 2 O
5HNO 3 (конц.,гор.) + P (красный) = H 3 PO 4 + 5NO 2 + H 2 O
2HNO 3 (конц.,гор.) + SO 2 = H 2 SO 4 + 2 NO 2

Оксид диазота N 2 O

Бесцветный газ с приятным запахом («веселящий газ»), N꞊N꞊О, формальная степень окисления азота +1, плохо растворим в воде. Поддерживает горение графита и магния:

2N 2 O + C = CO 2 + 2N 2 (450˚C)
N 2 O + Mg = N 2 + MgO (500˚C)
Получают термическим разложением нитрата аммония:
NH 4 NO 3 = N 2 O + 2 H 2 O (195- 245˚C)
применяется в медицине, как анастезирующее средство.

Триоксид диазота N 2 O 3

При низких температурах –синяя жидкость, ON꞊NO 2 , формальная степень окисления азота +3. При 20 ˚C на 90% разлагается на смесь бесцветного NO и бурого NO 2 («нитрозные газы», промышленный дым – «лисий хвост»). N 2 O 3 – кислотный оксид, на холоду с водой образует HNO 2 , при нагревании реагирует иначе:
3N 2 O 3 + H 2 O = 2HNO 3 + 4NO
Со щелочами дает соли HNO 2, например NaNO 2 .
Получают взаимодействием NO c O 2 (4NO + 3O 2 = 2N 2 O 3) или с NO 2 (NO 2 + NO = N 2 O 3)
при сильном охлаждении. «Нитрозные газы» и экологически опасны, действуют как катализаторы разрушения озонового слоя атмосферы.

Пентаоксид диазота N 2 O 5

Бесцветное, твердое вещество, O 2 N – O – NO 2 , степень окисления азота равна +5. При комнатной температуре за 10 ч разлагается на NO 2 и O 2 . Реагирует с водой и щелочами как кислотный оксид:
N 2 O 5 + H 2 O = 2HNO 3
N 2 O 5 + 2NaOH = 2NaNO 3 + H 2
Получают дегидротацией дымящейся азотной кислоты:
2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3
или окислением NO 2 озоном при -78˚C:
2NO 2 + O 3 = N 2 O 5 + O 2


Нитриты и нитраты

Нитрит калия KNO 2 . Белый, гигроскопичный. Плавится без разложения. Устойчив в сухом воздухе. Очень хорошо растворим в воде (образуя бесцветный раствор), гидролизуется по аниону. Типичный окислитель и восстановитель в кислотной среде, очень медленно реагирует в щелочной среде. Вступает в реакции ионного обмена. Качественные реакции на ион NO 2 — обесцвечивание фиолетового раствора MnO 4 и появление черного осадка при добавлении ионов I. Применяется в производстве красителей, как аналитический реагент на аминокислоты и йодиды, компонент фотографических реактивов.
уравнение важнейших реакций:
2KNO 2 (т) + 2HNO 3 (конц.) = NO 2 + NO + H 2 O + 2KNO 3
2KNO 2 (разб.)+ O 2 (изб.) → 2KNO 3 (60-80 ˚C)
KNO 2 + H 2 O + Br 2 = KNO 3 + 2HBr
5NO 2 — + 6H + + 2MnO 4 — (фиол.) = 5NO 3 — + 2Mn 2+ (бц.) + 3H 2 O
3 NO 2 — + 8H + + CrO 7 2- = 3NO 3 — + 2Cr 3+ + 4H 2 O
NO 2 — (насыщ.) + NH 4 + (насыщ.)= N 2 + 2H 2 O
2NO 2 — + 4H + + 2I — (бц.) = 2NO + I 2 (черн.) ↓ = 2H 2 O
NO 2 — (разб.) + Ag + = AgNO 2 (светл.желт.)↓
Получение в промышленности – восстановлением калийной селитры в процессах:
KNO 3 + Pb = KNO 2 + PbO (350-400˚C)
KNO 3 (конц.) + Pb(губка) + H 2 O = KNO 2 + Pb(OH) 2 ↓
3 KNO 3 + CaO + SO 2 = 2 KNO 2 + CaSO 4 (300 ˚C)

H итрат калия KNO 3
Техническое название калийная, или индийская соль, селитра. Белый, плавится без разложения при дальнейшем нагревании разлагается. Устойчив на воздухе. Хорошо растворим в воде (с высоким эндо -эффектом, = -36 кДж), гидролиза нет. Сильный окислитель при сплавлении (за счет выделения атомарного кислорода). В растворе восстанавливается только атомарным водородом (в кислотной среде до KNO 2 , в щелочной среде до NH 3). Применяется в производстве стекла, как консервант пищевых продуктов, компонент пиротехнических смесей и минеральных удобрений.

2KNO 3 = 2KNO 2 + O 2 (400- 500 ˚C)

KNO 3 + 2H 0 (Zn, разб. HCl) = KNO 2 + H 2 O

KNO 3 + 8H 0 (Al, конц. KOH) = NH 3 + 2H 2 O + KOH (80 ˚C)

KNO 3 + NH 4 Cl = N 2 O + 2H 2 O + KCl (230- 300 ˚C)

2 KNO 3 + 3C (графит) + S = N 2 + 3CO 2 + K 2 S (сгорание)

KNO 3 + Pb = KNO 2 + PbO (350 — 400 ˚C)

KNO 3 + 2KOH + MnO 2 = K 2 MnO 4 + KNO 2 + H 2 O (350 — 400 ˚C)

Получение : в промышленности
4KOH (гор.) + 4NO 2 + O 2 = 4KNO 3 + 2H 2 O

и в лаборатории:
KCl + AgNO 3 = KNO 3 + AgCl↓






Вариант 1.



1. Число нейтронов в атоме 4N14:
А. 7.


Б. Азоту.

3. Азот имеет степень окисления +5 в соединении с формулой:
Г. HN03.

4. Минимальная степень окисления азота в соединении (из перечисленных ниже) с формулой:
А. N2.


Б. Фосфор.

6. Наименьший радиус у атома:
Г. F.


Б. Са3Р2.

8. Азотистой кислоте соответствует оксид с формулой:
Б. N203.

10. Коэффициент перед окислителем в реакции, схема которой
Ag + HN03(KOHЦ) -> AgN03 + N02 + Н20:

Б. 4.


11. Составьте молекулярные уравнения реакций следующих превращений:
Р -> Р205 -> H3P04 -> Na3P04.

1. 4Р + 5О2 = 2Р2О5
P0 -5e →P+5 восстановитель
O20 + 2*2e→2O-2 окислитель
2. Р2О5 + 3Н2О = 2Н3РО4
3. Н3РО4 + 3NaOH = Na3PO4 + 3H2O
3Н+ + 3OH- = 3H2O

12. Дополните фразу: «Аллотропия - это...»
существование двух и более простых веществ одного и того же химического элемента, различных по строению и свойствам.

13. С какими из веществ, формулы которых: КОН, С02, Zn, CuO, НС1, СаС03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 + КOH → КNO3 + H2O
3CuO + 6HNO3 = 3Cu(NO3)2 + 3H2O
10HNO3 разбавл. + 4Zn = 4Zn(NO3)2 + NH4NO3 + 3H2O
2HNO3 + CaCO3 = Ca(NO3)2 + H2O + CO2

14. Закончите схему термического разложения нитрата меди (II):
Cu(N03)2 --> CuO + X + 02.

2Cu(NO3)2 = 2CuO + 4NO2 + O2
Сумма коэфф. = 9

15. При взаимодействии 37 г гидроксида кальция с сульфатом аммония было получено 15 г аммиака. Вычислите массовую долю выхода аммиака от теоретически возможного.
Ca(OH) 2 +(NH4)2 SO4 =CaSO4+2NH3*H2O
M Ca(OH)2=40+32+2=74г/моль.
n Ca(OH)2 =37: 74=0.5 моль
1 моль Са(ОH)2: 2 моль NH3
0.5:1 моль
M NH3 = 17г \моль
масса 17*1=17 г.
выход (NH3)=15: 17=0.88=88%

Вариант 2.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 7N15:
А. 8.


В. Фосфору.

3. Азот имеет степень окисления +4 в соединении с формулой:
B. N02.

4. Минимальная степень окисления фосфора в соединении с формулой:
Б. РН3.

5. Из перечисленных химических элементов наибольшей электроотрицательностью в соединениях обладает:
В. Сера

6. Наименьший радиус у атома, символ которого:
Г. С1.

7. Только восстановителем может быть вещество с формулой:
B. NH3.

8. Фосфористой кислоте Н3Р03 соответствует оксид с формулой:
В. Р2О3


Сu + HN03(KOHЦ) -> CU(N03)2 + N02 + Н20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций, идущих по схеме
NO → N02 → HN03 → NaN03.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. HNO3 + NaOH = NaNO3 + H2O
H+ + OH- = H2O

12. Дополните следующую фразу: «Селитра - это...»
Азотнокислая соль калия, натрия, аммония, употребляемая в технике взрывчатых веществ и в агрономии для удобрений.

13. С какими из веществ, формулы которых: Mg, Ag, AgN03, BaO, C02, KN03, NaOH, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Mg + 2H3PO4 = Mg3(PO4)2↓ + 3H2
2H3PO4 +3BaO = Ba3(PO4)2 + 3H2O
Na3PO4 + 3AgNO3 = Ag3PO4↓ + 3NaNO3

14. Закончите схему термического разложения нитрата натрия
NaN03 → NaN02 + X.
Найдите сумму коэффициентов в уравнении.

2NaNO3 = 2NaNO2 + O2
Сумма коэффициентов – 5

15. Какой объем аммиака (н. у.) можно получить при взаимодействии 15 м3 азота с избытком водорода, если выход аммиака составляет 10% от теоретически возможного?
N2 + 3H2 = 2NH3
n(N2) = 15 000 /22,4 = 669 (моль)
n(NH3) = 2*669 = 1339,28 (моль)
Vтеор.(NH3) = 1339,28*22,4= 29999 (дм3)
Vпракт. (NH3) = 29999*0,9 = 26999 (дм3) = 26, 999 м3

Вариант 3.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в атоме 20Са40:
Б. 20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 5е соответствует:
А. Азоту.

3. Азот имеет степень окисления +2 в соединении с формулой:
Б. NO.

4. Максимальная степень окисления азота в соединении с формулой:
Г. HN03.


А. Бор.


А. С.


Г. Н3Р04.

8. Азотной кислоте соответствует оксид с формулой:
Г. N205.

10. Коэффициент перед окислителем в схеме
Ag + HN03(paзб) -> AgN03 + NO + H20:

Б. 4.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме
N2 → NH3 → NH3 Н20 → (NH4)2S04.
Уравнение 1 рассмотрите с точки зрения теории ОВР, уравнение 3 запишите в ионном виде.

1. N2 + 3H2 = 2NH3
N20 +2*3е→2N-3 окислитель
H20 -2*1е→2H+1 восстановитель
2. NH3 + H2O = NH3*H20
3. 2NH3*H20 + H2SO4 = (NH4)2SO4 +2H2O
2NH3*H20 + 2H+= 2NH4+ +2H2O

12. Дополните фразу: «Число атомов, входящих в катион аммония...»
равно 5.

13. С какими из веществ, формулы которых: S03, КОН, CaO, Mg, N205, Na2C03, взаимодействует разбавленная азотная кислота? Запишите уравнения возможных реакций в молекулярном виде.
HNO3 (разб.) + КOH = КNO3 + H2O
2HNO3 + CaO = Ca(NO3)2 + H2O
10HNO3 разбавл. + 4Mg = 4Mg(NO3)2 + N2O + 3H2O
2HNO3 + Na2CO3 = 2NaNO3 + H2O + CO2

14. Закончите схему термического разложения нитрата серебра
AgNOg → Ag + X + 02.
Укажите сумму коэффициентов в уравнении.

2AgNO3 = 2Ag + 2NO2 + O2
7

15. Азот объемом 56 л (н. у.) прореагировал с избытком водорода. Объемная доля выхода аммиака составляет 50% от теоретически возможного. Рассчитайте объем полученного аммиака.
N2 + 3H2 = 2NH3
n(N2) = 56 /22,4 = 2,5 (моль)
n(теор.)(NH3) = 2*2,5 = 5 (моль)
Vпракт. (NH3) = 5*22,4*0,5 = 56 л

Вариант 4.


ЧАСТЬ А. Тестовые задания с выбором ответа


1. Число нейтронов в изотопе 19K39:
В.20.

2. Распределение электронов по энергетическим уровням в атоме элемента 2е, 8е, 5е соответствует:
Б. Фосфору.

3. Азот имеет степень окисления 0 в соединении с формулой:
A. N2.

4. Максимальная степень окисления фосфора в соединении с формулой:
Г. Н3Р04.

5. Из перечисленных химических элементов наименьшей электроотрицательностью в соединениях обладает:
А. Бериллий.

6. Наибольший радиус у атома химического элемента, символ которого:
A. Si.

7. Только окислителем может быть вещество с формулой:
Г. HN03.

8. Ортофосфорной кислоте соответствует оксид с формулой:
Г. Р2О5.

10. Коэффициент перед окислителем в схеме
Си + HN03(paзб) -> CU(N03)2 + NO + Н20:

Г. 8.

ЧАСТЬ Б. Задания со свободным ответом


11. Составьте молекулярные уравнения реакций по схеме:
NO → N02 → HN03 → NH4N03.
Уравнение 1 рассмотрите с точки зрения ОВР, уравнение 3 запишите в ионном виде.

1. 2NO + O2 = 2NO2
N+2 -2e→N+4 восстановитель
O20 +2*2e→2O-2 окислитель
2. 4NO2 + O2 + 2H2O = 4HNO3
3. NH3 + HNO3 = NH4NO3
NH3 + H+ = NH4+

12. Дополните фразу: «Аллотропными видоизменениями фосфора являются...»
белый, красный и черный фосфор

13. С какими из веществ, формулы которых: Zn, CuO, Си, NaOH, S02, NaN03, K2C03, взаимодействует ортофосфорная кислота? Запишите уравнения возможных реакций в молекулярном виде.
3NaOH + H3PO4 = Na3PO4 + 3H2O
3 Zn + 2H3PO4 = Zn3(PO4)2↓ + 3H2
3CuO + 2H3PO4 = Cu3(PO4)2 + 3H2O
3K2CO3 + 2H3PO4 = 2K3PO4 + 3H2O + 3CO2

14. Закончите схему термического разложения нитрата железа (II):
Fe(N03)2 → FeO + N02 + X.
Найдите сумму коэффициентов в уравнении.

2Fe(NO3)2 = 2FeO + 4NO2 + O2

15. При сжигании в кислороде 62 г фосфора было получено 130 г оксида фосфора (V) от теоретически возможного. Вычислите массовую долю выхода оксида фосфора (V).
4P + 5O2 = 2P2O5
n(P) = 62/31 = 2 моль
nтеор.(P2O5) = 0,5*2 = 1 моль
mтеор.(P2O5) = 1*142 = 142 г
выход = mпракт./mтеор. = 130/142=0.92 = 92%